[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2021, Vol. 58 Issue (6) :21-30    DOI:
研究与探讨 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
冷水混入模式对藏南隧道高温热害预测的影响
(中国地质调查局水文地质环境地质调查中心,保定 071051)
Effect of Cold Water Mixing Modes on Prediction of High Geo-temperature Induced Heat Hazards in Tunnelling in South Tibet
(Center for Hydrogeology and Environmental Geology Survey, Baoding 071051)
Download: PDF (5432KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 拉月隧道为川藏铁路高温热害易发路段,针对与其紧密相关的长青温泉、排龙温泉与拉月温泉进行水化学与同位素分析,得出上述温泉具有不同成因,且均有冷水混入,其中拉月温泉冷水混入比高达91%。考虑冷水混入对隧道高温热害预测的影响,提出了两种温泉冷水混入模式,其中热水与浅层冷水混合模式下,冷热水混合带一般接近或高于温泉点高程,在低于温泉点高程位置修建隧道遇到高温热害风险较大;热水与承压冷水混合模式下,冷热水混合带一般为承压冷水含水层位置,低于温泉点高程,在高于温泉点高程位置修建隧道遇到高温热害风险较小。依据地形地貌、地质构造与温泉、钻孔等地质信息,推断研究区温泉为热水与浅层冷水混合模式,基于上述观点对川藏铁路拉月隧道高温热害提出预测,划定了6段高温热害危险区,其中①~④段热害温度可能较高,⑥段需开展进一步研究以确定其热害程度。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
付 雷 马 鑫 邵 炜
关键词:   
Abstract: Layue tunnel is located on Sichuan-Tibet railway, it is prone to high geo-temperature induced heat haz? ards. So, hydrochemical and isotopic analysis is carried out for Changqing, Pailong and Layue hot springs, which are closely related to the tunnel. It is found that the above hot springs are formed by different causes and all mixed with cold water. Among the others, the mixing ratio of cold water in Layue hot spring is as high as 91%. Considering the effect of cold water mixing on the prediction of high geo-temperature induced heat hazards in the tunnel, two mixing modes of cold water in hot-spring are put forward. In the mixing mode of shallow cold water with hot water, the mixing zone of cold and hot water is generally close to or higher than the elevation of the hot spring point. So, the heat hazard risk induced by high geo-temperature would be greater when a tunnel is built below the elevation of the hot spring point. In the mixing mode of hot water and confined cold water, the mixing zone of cold and hot water is generally located in the confined cold water aquifer, lower than the elevation of the hot spring point. The heat hazard risk induced by high geo-temperature would be smaller when a tunnel is built above the elevation of the hot spring point.According to the landform, geological structure, hot springs, boreholes and other geological information, it is inferred that the hot springs in the studied area are the mixing mode of hot water and shallow cold water. Based on the above viewpoint, the high geo-temperature induced heat hazards are predicted for the Layue tunnel and it is determined that there are 6 sections with high geo-temperature induced heat hazard risks. Among them, the section ① ~ ④might have higher heat hazards, and section ⑥ should be further researched to determine the degree of the heat hazard.
KeywordsHigh geo-temperature induced heat hazard,   Cold water mixing,   Railway tunnel,   Hot spring,   Hydro? chemistry     
基金资助:基金项目:国家重点研发计划项目(2018YFB1501801);中国地质调查局地调项目(DD20190534).
作者简介: 作者简介:付 雷(1986-),男,硕士,高级工程师,主要从事地热地质方面的研究工作,E-mail:57330959@qq.com. 通讯作者:马 鑫(1986-),男,硕士,高级工程师,主要从事水工环地质方面的研究工作,E-mail:maxin@mail.cgs.gov.cn.
引用本文:   
付 雷 马 鑫 邵 炜 .冷水混入模式对藏南隧道高温热害预测的影响[J]  现代隧道技术, 2021,V58(6): 21-30
FU Lei MA Xin SHAO Wei .Effect of Cold Water Mixing Modes on Prediction of High Geo-temperature Induced Heat Hazards in Tunnelling in South Tibet[J]  MODERN TUNNELLING TECHNOLOGY, 2021,V58(6): 21-30
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2021/V58/I6/21
 
没有本文参考文献
[1] 冯冀蒙 1,2 蒋 辉 1,2 丁晓琦 1,2 虞龙平 1,2 张俊儒 1,2.并行双洞隧道穿越滑坡工程研究进展与挑战[J]. 现代隧道技术, 2021,58(6): 1-10
[2] 卢冠楠 1 王 鹏 1 杨 蕴 2 毛成君 3 吴咏敬 4 吴剑锋 3 董 平 3, 4 吴吉春 3.岩溶区隧道排水系统地下水渗流结晶堵塞机理及阻垢技术研究综述[J]. 现代隧道技术, 2021,58(6): 11-20
[3] 董建松.厦门海沧海底隧道穿越风化槽施工技术[J]. 现代隧道技术, 2021,58(6): 197-203
[4] 花晓鸣 罗晨曦 苟晓军 张海超.结合Landsat 8遥感影像的长大深埋隧道地表地热空间分布特征分析——以高黎贡山隧道为例[J]. 现代隧道技术, 2021,58(6): 31-37
[5] 王明年 1,2 崔 鹏 1,2 于 丽 1,2 卢旭东 3 胡萧越 1,2 夏鹏曦 1,2.基于台阶试验的相对最大摄氧量与人员疏散能力关系研究[J]. 现代隧道技术, 2021,58(6): 38-45
[6] 周晓军 1 郭 建 1 杨昌宇 2 卿伟宸 2 熊国兴 2 旷文涛 2 潘英东 1.钻爆法双线铁路隧道预制拼装二次衬砌分块方式研究[J]. 现代隧道技术, 2021,58(6): 46-58
[7] 何乐平 1 徐应东 1 胡启军 1 蔡其杰 2.基于博弈论-云模型的软岩隧道大变形风险评估[J]. 现代隧道技术, 2021,58(6): 85-94
[8] 郝俊锁.复杂地质特长深埋水工隧洞智能化施工关键技术研究[J]. 现代隧道技术, 2021,58(6): 188-196
[9] 魏 纲 1 郝 威 2 魏新江 1 王 霄 2 章书远 2.竖向顶管施工全过程数值模拟研究[J]. 现代隧道技术, 2021,58(6): 59-67
[10] 肖尊群 1,2,3 曹童童 1 许彩云 1 杨 凯 2 董琼英 1 姜亦男 1 耿星月 1 舒志鹏 1.基于叠加原理的大尺寸矩形截面竖向曲线顶管顶进力数值估算方法[J]. 现代隧道技术, 2021,58(6): 68-76
[11] 徐公允 1 徐汪豪 1,2 姚志刚 1 方 勇 1 刘四进 3.基于三维RBD-DEM耦合方法的贯入角度对滚刀冲击影响分析[J]. 现代隧道技术, 2021,58(6): 77-84
[12] 来弘鹏 1 王 斌 1 刘禹阳 2.考虑地层开裂的浅埋黄土隧道围岩压力计算方法[J]. 现代隧道技术, 2021,58(6): 95-101
[13] 张冬梅 1,2 陈淙岑 2.管片钢筋和螺栓锈蚀条件下盾构隧道结构时变可靠度分析[J]. 现代隧道技术, 2021,58(6): 111-120
[14] 黄迪文 霍宏斌 陈 东.基于优化神经网络的圆形隧道受剪变形分析[J]. 现代隧道技术, 2021,58(6): 102-110
[15] 黄 鹏 1,2 韦良文 1,2 张学富 1,2.城市轨道交通重叠换乘大拱脚暗挖车站拱脚加固研究[J]. 现代隧道技术, 2021,58(6): 137-147
Copyright 2010 by 现代隧道技术