[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2022, Vol. 59 Issue (2) :172-181    DOI:
试验与监测 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
上软下硬地层大直径土压平衡盾构下穿民房建筑群沉降控制
(1.中铁建华南建设有限公司,广州 511458;2.中铁十八局集团有限公司,天津 300222)
On Settlement Control in Large-diameter EPB Shield Tunnelling under Civil Housing Complex in Upper-soft and Lower-hard Strata
(1. China Railway Construction South China Construction Co., Ltd., Guangzhou 511458; 2. China Railway 18th Bureau Group Co., Ltd.,Tianjin 300222)
Download: PDF (5671KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 依托广州地铁18号线盾构施工,针对其地层分布复杂、软硬差异大及穿越密集民房建筑群等特点,通过注浆加固、现场动态监测、优化掘进参数等一系列主动措施,解决实际工程中掘进参数合理取值与地表建筑沉降变形控制两大难题。研究结果表明:(1)在该类软硬地层中掘进时,刀盘在通过不同岩层断面分界线时扭矩、推力等参数波动较大,总推力与扭矩有良好的相关性,各掘进参数宜控制为:推力30 000~35 000 kN、扭矩4 500~6 000 kN·m、推进速度35~45 mm/min;(2)提出的多段式封孔洞内超前注浆工艺可使刀盘前18 m范围内的地表上抬3~5 mm,最大上抬值能达9.02 mm,同时能缓解土体在盾构下穿时及后续固结稳定的沉降趋势;(3)因刀具磨损、掘进参数波动大、螺旋机卡死等引起的临时停机会造成地表建筑日沉降速率超过3 mm/d,在预设停机点位置前采取洞内超前注浆和克泥效工法能有效缓解沉降趋势,在带压开舱期间日沉降速率控制在2 mm/d以下;(4)左右隧道轴线附近的地表建筑沉降基本可分为“微小隆起—沉降较大—逐渐稳定”三个阶段,测点最大沉降值最终稳定在-21.38 mm、-22.49 mm,均小于控制值。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
章邦超 1 刘洪亮 2 雷锋国 2 彭光火 2
关键词上软下硬地层   土压平衡盾构   密集建筑群   掘进参数   洞内超前注浆   沉降控制     
Abstract: The shield tunnelling of Guangzhou Metro Line 18 is faced to such characteristics as complex ground dis? tribution, large strength differences between soft and hard rocks, and dense residential building complex located above the tunnel. In view of this, it is intended to address two major problems in actual construction, i.e. settling the reasonable tunnelling parameters and controlling the settlement deformation of buildings on the ground surface through a series of active measures, such as grouting reinforcement, on-site dynamic monitoring, and optimization of tunnelling parameters. The results show that: (1) in this type of soft and hard rock interbedded strata, tunnelling parameters (such as torque and thrust) would fluctuate greatly when the cutterhead passes through the geological boundary of different strata, and the total thrust would be in a fine correlation with the torque, where it is appropriate to control the tunnelling parameters at certain values, i.e. the thrust at 30 000~35 000 kN, the torque at 4 500~6 000kN·m, and the advancing speed at 35~45 mm/min; (2) the proposed technological process of multi-section sealing and advanced grouting in the tunnel can lift the ground surface by 3~5 mm within the scope of 18 m in front of the cutterhead, with maximum lifting value of 9.02 mm, while it can also mitigate the settlement tendency of the soil mass induced by shield driving and subsequent consolidation and stabilization; (3) temporary shield stoppage caused by tool wear, large fluctuation in tunnelling parameters, and the jamming of the screw conveyor can cause the daily settlement rate of the buildings on the surface to exceed 3 mm/d. The adoption of advanced grouting in tunnel and the clay shock method ahead of the preset machine stop point can effectively alleviate the settlement tendency and control the daily settlement rate below 2 mm/d during the hyperbaric intervention of the earth chamber; (4) the settlement of the surface buildings near the left and right tunnel axes can be basically divided into three phases of slight heave—large settlement—gradual stabilization, with maximum settlement of -21.38 mm and -22.49 mm respectivly, being less than the control values.
KeywordsUpper-soft and lower-hard strata,   Earth pressure balance shield,   Dense building complex,   Tunnelling parameter,   Advanced grouting in tunnel,   Settlement control     
作者简介: 章邦超(1982-),男,高级工程师,主要从事城市轨道交通技术管理工作,E-mail:154151053@qq.com.
引用本文:   
章邦超 1 刘洪亮 2 雷锋国 2 彭光火 2 .上软下硬地层大直径土压平衡盾构下穿民房建筑群沉降控制[J]  现代隧道技术, 2022,V59(2): 172-181
ZHANG Bangchao1 LIU Hongliang2 LEI Fengguo2 PENG Guanghuo2 .On Settlement Control in Large-diameter EPB Shield Tunnelling under Civil Housing Complex in Upper-soft and Lower-hard Strata[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(2): 172-181
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2022/V59/I2/172
 
没有本文参考文献
[1] 王永刚1 崔翌堃1 吴九七2,3 黄 俊4 沈 翔2,3 杨 奎4 苏 栋2,3.考虑不同磨损形式下的滚刀受力与磨损对比分析[J]. 现代隧道技术, 2025,62(4): 73-81
[2] 冯冀蒙1,2 宋佳黛1,2 王圣涛3 李艺飞1,2 张俊儒1,2 王好明4 汪 波1,2.填海地层特大断面隧道超长管棚变形控制 效能研究[J]. 现代隧道技术, 2025,62(4): 155-162
[3] 苏 恒1 王士民1 朱旭红2 秦善良3.考虑空间效应的盾构刀具切削桩基主筋力学特征研究[J]. 现代隧道技术, 2025,62(3): 139-150
[4] 陈云尧.长江一级阶地盾构始发下穿既有地铁车站风险应对措施及掘进分析[J]. 现代隧道技术, 2025,62(3): 249-258
[5] 刘晓迪1 王怀东2 姜 涛1 王志国3.圆砾地层改良渣土流变性能室内试验研究[J]. 现代隧道技术, 2025,62(3): 282-290
[6] 张 广1 龚秋明1 谢兴飞1 裴成元2 尚 层2.基于Bootstrap-COA-BiGRU模型的TBM掘进步稳定段掘进参数区间预测[J]. 现代隧道技术, 2025,62(2): 121-131
[7] 张 欢1,2 张世殊3 李天斌1,2 杨 罡1,2 李世森1,2 肖华波3 陈卫东3.基于GAPSO-LightGBM的TBM施工隧道围岩等级智能预测方法[J]. 现代隧道技术, 2025,62(2): 98-109
[8] 李建斌.中国隧道掘进机技术进展与展望[J]. 现代隧道技术, 2024,61(2): 178-189
[9] 熊英健1 刘四进2 马浴阳2 方 勇1 何 川1.基于PSO算法的盾构掘进参数寻优方法及应用[J]. 现代隧道技术, 2023,60(6): 165-174
[10] 谢 苗 王浩男 李思遥 田 博 刘亚峰 张鸿宇.基于现场数据的TBM超小转弯工况下掘进参数研究[J]. 现代隧道技术, 2023,60(4): 58-66
[11] 李子锋 1 段保亮 2.粉细砂层盾构隧道施工掌子面坍塌及处理研究[J]. 现代隧道技术, 2023,60(4): 237-245
[12] 刘霆宇 1,2 王树英 1,2,3 钟嘉政 1,2.土压平衡盾构改良渣土坍落度试验与理论研究综述[J]. 现代隧道技术, 2023,60(2): 1-13
[13] 黄逢源 1 张康健 2 陈登开 1 张志强 2 贾 斌 1.富水复合地层土压平衡盾构渣土改良试验研究[J]. 现代隧道技术, 2023,60(1): 262-269
[14] 张庆龙 1,2 朱燕文 1 马 睿 2 严 冬 3 杨传根 3 崔同欢 3 李庆斌 2.基于注意力加强Bi-LSTM模型的TBM掘进参数预测研究[J]. 现代隧道技术, 2022,59(4): 69-80
[15] 刘招伟.卵石-漂石地层盾构隧道穿越铁路编组工程技术研究[J]. 现代隧道技术, 2022,59(4): 226-233
Copyright 2010 by 现代隧道技术