[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2023, Vol. 60 Issue (3) :90-101    DOI:
数值分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
内部结构不同施作时机对特大断面盾构隧道管片衬砌受力的影响研究
(1.西南交通大学交通隧道工程教育部重点实验室,成都 610031;2.中铁第四勘察设计院集团有限公司,武汉 430063)
Study on the Impact of Different Construction Timings of Internal Structure on the Stress of Segmental Lining of the Shield Tunnel with an Super-large Section
(1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031;2. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063)
Download: PDF (7859KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 以在建荷坳隧道为工程背景,采用有限元方法建立管片-内部结构三维精细化数值计算模型,通过分析内部结构不同施作时机下管片与内部结构的受力及变形,研究内部结构施作时机对特大断面盾构隧道管片衬砌受力性能的影响。结果表明,提前施作内部结构可以有效增加管片环横向刚度,并提升内部结构分担管片应力的占比,以将内部结构施作时机由 5‰ 椭圆度提前至 3‰ 椭圆度为例,管片与内部结构变形极值分别减小 28.47% 与32.83%,管片及其钢筋应力极值分别减小50.0%与14.4%,内部结构及其钢筋应力极值分别上升70.37%与19.55%;内部结构施作时机对管片环及内部结构的变形与应力分布规律基本无影响,但提前施作内部结构可使得管片及钢筋应力分布更加均匀;内部结构对管片环水平变形有较强抑制能力,以施作时机3‰椭圆度工况为例,内部结构施作后,管片竖向位移继续增加约19.0%,而水平位移仅增加0.36%,变形形态由“横鸭蛋状”转为“蝴蝶状”
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
胡振宇 1 封 坤 1 郭文琦 1 彭长胜 2 李姣阳 2
关键词盾构隧道   特大直径   内部结构   施作时机   横向力学性能   数值模拟     
Abstract: In the He'ao Tunnel project which is under construction, finite element method (FEM) is utilized to build a 3D refined numerical calculation model for segments and internal structure, and the impact of construction timing of internal structure on the stress performance of segmental lining of the shield tunnel with a super-large cross section is studied through the analysis of the stress and deformation of segments and internal structure at different construction timings of internal structure. The results show that both the transverse stiffness of segment rings and the proportion of segment stress shared by the internal structure would be raised if the internal structure construction started in advance. For example, if the construction timing is advanced from the time when ovality is 5‰ to the time when ovality is 3‰, the extreme values of the deformation of segment and internal structure will be reduced by 28.47% and 32.83% respectively, the extreme values of the stress of segment and its rebars will decrease by 50.0% and 14.4%, and the extreme values of the stress of internal structure and its rebars separately will increase by 70.37% and 19.55%; the construction timing of internal structure has no impact on the deformation and stress distribution law of segment ring and internal structure , but if the internal structure is constructed in advance, the stress of segments and rebars will be distributed more evenly; the internal structure will have a relatively strong ability to suppress the horizontal deformation of segment rings. Taking the case where the construction timing is the time when ovality is 3‰ as an example, the vertical displacement of segments continue to increase by about 19.0% after the construction of internal structure, while the horizontal displacement increases by 0.36% only, and the deformation shape changes from "horizontal duck egg shape" to "butterfly shape" .
KeywordsShield tunnel,   Super-large diameter,   Internal structure,   Construction timing,   Transverse mechanical property,   Numerical simulation     
基金资助:国家自然科学基金(52078430,51878569).
作者简介: 胡振宇(2001-),男,硕士研究生,主要从事隧道结构设计与施工研究工作,E-mail: 18070020997@163.com. 通讯作者:封 坤(1983-),男,博士,教授,主要从事隧道与地下工程方面的研究与教学工作,E-mail:windfeng813@163.com.
引用本文:   
胡振宇 1 封 坤 1 郭文琦 1 彭长胜 2 李姣阳 2 .内部结构不同施作时机对特大断面盾构隧道管片衬砌受力的影响研究[J]  现代隧道技术, 2023,V60(3): 90-101
HU Zhenyu1 FENG Kun1 GUO Wenqi1 PENG Changsheng2 LI Jiaoyang2 .Study on the Impact of Different Construction Timings of Internal Structure on the Stress of Segmental Lining of the Shield Tunnel with an Super-large Section[J]  MODERN TUNNELLING TECHNOLOGY, 2023,V60(3): 90-101
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2023/V60/I3/90
 
没有本文参考文献
[1] 闫鹏飞 蔡永昌 周 龙.基于深层神经网络的管片接头刚度非线性模型及应用[J]. 现代隧道技术, 2023,60(3): 24-33
[2] 王立川 1,2 付柏毅 2 章慧健 2 冀国栋 1 耿 麒 3 王铮铮 4 王灿林 5 王 锋 6.TBM滚刀切削花岗岩和灰岩的力学响应差异[J]. 现代隧道技术, 2023,60(3): 81-89
[3] 钱 源 1 徐 冲 2 刘晓瑞 2 黄 猛 3.荷载与锈胀双重力学作用下海底盾构隧道管片开裂机理研究[J]. 现代隧道技术, 2023,60(3): 102-111
[4] 薛光桥 1 虞雄兵 3 肖明清 1,2 张超勇 3,4 何应道 1,.考虑压缩-错缝-外部水压的密封垫防水性能数值模拟研究[J]. 现代隧道技术, 2023,60(3): 139-145
[5] 张学军 1 聂启强 2 龚元江 3.滇中红层隧洞软岩大变形规律研究[J]. 现代隧道技术, 2023,60(3): 156-163
[6] 肖明清 1,2 杨文倩 3 封 坤 3 焦齐柱 1 毛 升 1 王运超 3.火灾下盾构隧道衬砌结构受力与抗火措施模拟分析[J]. 现代隧道技术, 2023,60(3): 199-207
[7] 韩晓明 1,2 何 源 1,2 张飞雷 2,3,4.富水粉细砂层大直径盾构隧道联络通道施工关键技术研究——以孟加拉卡纳普里河底隧道为例[J]. 现代隧道技术, 2023,60(3): 227-235
[8] 陈景煦 蔡永昌.基于独立覆盖等几何壳的盾构隧道虚拟接头试验方法研究[J]. 现代隧道技术, 2023,60(2): 22-27
[9] 郑 爽 1,2 刘 超 3 朱德霖 3 刘 海 3 贾新卷 1.大直径盾构掘进非对称同步注浆地层扰动规律研究[J]. 现代隧道技术, 2023,60(2): 168-177
[10] 张建勇 1 李明宇 2,3 陈 健 3,4 余刘成 2 李义翔 1 杨公标 3,4 王 越 2,3.基于双面弹性地基梁的大直径盾构隧道管片上浮预测方法[J]. 现代隧道技术, 2023,60(2): 159-167
[11] 燕 波 1 张俊儒 2 张新锦 1 彭 磊 1 宁 波 1.基于围岩径向位移释放率的超大断面隧道下穿施工围岩稳定性研究[J]. 现代隧道技术, 2023,60(2): 115-124
[12] 邬 泽 1 顾福霖 2 付艳斌 3.采用压密注浆定量纠偏运营地铁盾构隧道技术研究[J]. 现代隧道技术, 2023,60(2): 185-193
[13] 袁 杰 1 祁佳睿 2 肖 翔 1 李赞新 1 俞立新 1 潘以恒 2.盾构接收钢套筒内填料压力主动调控试验研究[J]. 现代隧道技术, 2023,60(2): 230-237
[14] 杜永潇 1,2,3 孙晓立 1,2,4 杨 军 1,2,4 张焱森 1,2.盾构隧道火灾损伤技术状况检测与鉴定研究[J]. 现代隧道技术, 2023,60(2): 260-270
[15] 曹翔鹏 1,2 封 坤 2 薛皓匀 2 毛 升 1 喻 波 2,3.大直径盾构隧道双层衬砌横向抗震性能研究[J]. 现代隧道技术, 2023,60(1): 130-139
Copyright 2010 by 现代隧道技术