[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2023, Vol. 60 Issue (5) :213-223    DOI:
规划设计与施工 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
高黏性黏土地层大直径泥水盾构掘进姿态失稳及其处理措施
(1.中铁隧道股份有限公司,郑州 450000;2.中南大学土木工程学院,长沙 410075;3.中铁开发投资集团有限公司,昆明 650200)
Instability of Large Diameter Slurry Shield Tunnelling Attitude in Highly Viscous Clay Strata and Treatment Measures
(1. China Railway Tunnel Stock Co., Ltd., Zhengzhou 450000; 2. School of Civil Engineering, Central South University,Changsha 410075; 3. China Railway Development and Investment Group Co., Ltd., Kunming 650200)
Download: PDF (8166KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为解决盾构机在高黏性黏土地层掘进时可能遭遇的掘进效率低下、盾构姿态控制困难等问题,依托某大直径泥水盾构越江隧道工程,针对该大直径泥水盾构掘进时出现的掘进异常和姿态失稳问题,结合盾构掘进参数和掘进断面内的地层变化情况,探讨了高黏性黏土地层大直径泥水盾构掘进姿态失稳原因,提出并实施了相应的处理措施。结果表明:(1)盾构掘进异常段与高黏性黏土地层的分布情况重合,地质条件的变化是盾构姿态失稳的根本原因;(2)盾构在高黏性地层掘进时刀盘实际正面阻力与理论计算结果相近,而盾壳与地层间的实际摩阻力远高于理论值,且打开盾壳径向注浆孔后未发生喷浆渗水情况,据此推断造成盾构掘进异常并导致盾构姿态失稳的直接原因是高黏性黏土颗粒在盾壳外表面不断附着堆积形成了致密的黏土包裹体,改变了盾壳与地层间的相互作用状态;(3)借鉴采用分散剂处置泥饼措施,采用向盾壳径向注浆孔注入分散剂方案清除盾壳外的黏土包裹体,通过室内黏土分散试验优选了分散剂溶液;(4)在盾壳外持续注入一段时间的分散剂后,在隧道埋深不断增大的情况下盾构总推力迅速减小约30 000 kN,盾构姿态得到持续调整,再次打开盾壳径向注浆孔后发生喷浆现象,表明分散剂可有效剥除盾壳外表面的黏土包裹体。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
王延辉1 周天顺1 胡俊山1 陈海勇2
3 施成华2 彭 宇1 王祖贤2
关键词泥水盾构   黏土   姿态失稳   包裹体   分散     
Abstract: In order to solve the problems of low tunnelling efficiency and difficulty in control of the shield attitude that may occur when the shield tunnelling machine operates in highly viscous clay strata, in this study, based on a cross-river tunnel project with a large diameter slurry shield tunneling machine and focused on the problems of abnormal excavation and attitude instability, the causes for attitude instability during tunnelling in highly viscous clay strata are discussed in combination with the tunnelling parameters and the changes of the strata within the tunnelling section, and corresponding treatment measures are proposed and implemented. The results show that: (1) the abnormal section of shield tunnelling coincides with the distribution of highly viscous clay strata, and the change in geological conditions is the fundamental cause for the attitude instability of shield tunnelling; (2) The actual frontal resistance of the cutterhead when the shield tunnelling machine operates in highly viscous strata is similar to the theoretical calculation results, while the actual frictional resistance between the shield housing and the strata is far higher than the theoretical value, and no guniting and water seepage occurs after opening the radial grouting holes on the shield housing, so it is inferred that the direct cause of the abnormal shield tunnelling and attitude instability of the shield machine is the continuous adhesion and accumulation of highly viscous clay particles on the outer surface of the shield housing to form dense clay inclusions, which changes the interaction state between the shield housing and the strata; (3) By drawing inspiration from the disposal measures of dispersant mud cake, the protocol that a dispersant is injected into the radial grouting holes on the shield housing is used to remove the clay inclusions outside the shield housing. The dispersant solution is selected through indoor clay dispersion tests; (4) After continuous in? jection of dispersant outside the shield housing for a period of time, the total thrust of the shield machine quickly decreases by about 30,000 kN with the continuous growth of the burial depth of the tunnel. As the shield tunnelling slows down, the shield attitude is continuously adjusted. After reopening the radial grouting holes on the shield housing, guniting occurs, indicating that the dispersant can effectively peel off the clay coverings on the outer surface of the shield housing.
KeywordsSlurry shield,   Clay,   Attitude instability,   Inclusion,   Dispersion     
作者简介: 王延辉(1979-),男,高级工程师,主要从事隧道工程施工技术研究及管理工作,E-mail: 524100234@qq.com. 通讯作者:胡俊山(1995-),男,工程师,主要从事隧道工程施工技术研究及管理工作,E-mail:597599497@qq.com.
引用本文:   
王延辉1 周天顺1 胡俊山1 陈海勇2, 3 施成华2 彭 宇1 王祖贤2 .高黏性黏土地层大直径泥水盾构掘进姿态失稳及其处理措施[J]  现代隧道技术, 2023,V60(5): 213-223
WANG Yanhui1 ZHOU Tianshun1 HU Junshan1 CHEN Haiyong2, 3 SHI Chenghua2 PENG Yu1 WANG Zuxian2 .Instability of Large Diameter Slurry Shield Tunnelling Attitude in Highly Viscous Clay Strata and Treatment Measures[J]  MODERN TUNNELLING TECHNOLOGY, 2023,V60(5): 213-223
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2023/V60/I5/213
 
没有本文参考文献
[1] 胡威东1,2.超大直径泥水盾构隧道施工通风设计方案研究[J]. 现代隧道技术, 2023,60(5): 186-194
[2] 李子锋 1 段保亮 2.粉细砂层盾构隧道施工掌子面坍塌及处理研究[J]. 现代隧道技术, 2023,60(4): 237-245
[3] 刘志涛 1,2 吴思麟 1,2,3 孙晓辉 3,4 周爱兆 1,2.残余掺加剂对盾构废浆絮凝分离特性的影响及作用机理[J]. 现代隧道技术, 2023,60(4): 264-
[4] 李 辉 1 刘泓志 1 王诗雨 2, 3 王云芝 2, 3 闵凡路.卵砾石地层泥水盾构不同性质泥浆成膜试验研究[J]. 现代隧道技术, 2023,60(3): 175-181
[5] 方忠强 1,2 袁 锐 3 孙统立 1,2 王登峰 3 江苏禹 4 张建峰 4 闵凡路 3.高含泥率废弃粉质土砂配制盾构壁后注浆浆液试验研究[J]. 现代隧道技术, 2023,60(3): 182-188
[6] 竺维彬 1 米晋生 1 谢文达 2 孟繁璟 2.“巨厚岩层”覆盖下泥水盾构施工沉陷原因及对策研究[J]. 现代隧道技术, 2022,59(6): 1-13
[7] 周胜利.软弱泥岩大直径盾构姿态失稳与处理措施研究[J]. 现代隧道技术, 2022,59(6): 208-215
[8] 张文宏 1 刘映晶 2 王军棋 2 李浩然 2 孙奎柱 2 朱汉华 2.基于硅灰对注浆材料抗水分散性能影响的外加剂优化研究[J]. 现代隧道技术, 2022,59(4): 265-272
[9] 刘泓志 1,2 干聪豫 1,2 赵 亮 1,2 左世荣 1,2 张晗硕 1,2.基于地质条件变化的泥水盾构动态施工技术研究[J]. 现代隧道技术, 2022,59(3): 246-252
[10] 刘来仓 1,2 夏鹏举 3 吕焕杰 1,2 王云芝 1,2 李鹏飞 1,2 闵凡路 1,.CMC改性海水泥浆性质变化及砂地层成膜试验研究[J]. 现代隧道技术, 2022,59(1): 249-255
[11] 宋 洋 1 王韦颐 2 杜春生 3.富水圆砾与泥岩复合地层泥水盾构超近接下穿既有地铁隧道掘进参数优化研究[J]. 现代隧道技术, 2021,58(5): 85-95
[12] 陆岸典 1 肖 惠 2 沈 翔 2 付艳斌 2.狮子洋输水隧洞泥水盾构设计及施工技术分析[J]. 现代隧道技术, 2020,57(5): 226-231
[13] 刘成1,2 陆杨1 刘磊1 吕伟华1.加砂泥浆在砂性地层中的堵塞机制及成膜结构分析[J]. 现代隧道技术, 2018,55(5): 245-253
[14] 孔玉清.泥水盾构环流系统及排泥管携碴能力分析与应用[J]. 现代隧道技术, 2018,55(3): 205-213
[15] 王助锋 1,2 冯欢欢 1,2.泥质粉砂岩地层泥水盾构防止刀盘结泥饼针对性改进[J]. 现代隧道技术, 2017,54(6): 217-222
Copyright 2010 by 现代隧道技术