[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (1) :190-199    DOI:
试验与监测 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
冻结法地铁联络通道施工对邻近盾构隧道管片影响的测试分析
(1.华东交通大学土木建筑学院,南昌 330013;2. 华东交通大学江西建筑设计院有限公司,南昌 330013; 3. 中南大学土木工程学院,长沙 410075;4. 南昌轨道交通集团有限公司,南昌 330038; 5. 中国铁路南昌局集团有限公司,南昌 330009)
Test and Analysis of the Effect of the Freezing Construction of Subway Cross Passage on Adjacent Shield Tunnel Segment
(1. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013; 2. East China Jiaotong University Jiangxi Architectural Design Institute Co., Ltd., Nanchang 330013; 3. School of Civil Engineering, Central South University,Changsha 410075; 4. Nanchang Rail Transit Group Limited Corporation, Nanchang 330038;5. China Railway Nanchang Group Co., Ltd., Nanchang 330009)
Download: PDF (6531KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为探究冻结法地铁联络通道施工对邻近盾构隧道管片的影响,依托南昌地铁1号线东延段瑶湖东站—麻丘站区间2#联络通道工程开展现场测试,对邻近管片水土压力、结构内力、竖向位移、净空收敛以及地表沉降进行长期监测。结果表明:(1)联络通道开挖前,受冻胀力影响,邻近盾构隧道管片环外水土压力有所增大,其最大值分别为170 kPa、150 kPa,相较于冻结前分别增大11.1%、15.4%;土体稳定后水土压力最大值分别为173 kPa、148 kPa,相较于冻结前分别增大12.4%、13.8%。(2)受地层冻结影响,邻近管片最大弯矩、轴力分别为-103.1 kN·m、2 314 kN,相较于冻结前分别增大28.09%和 19.8%。(3)受冻胀力影响,邻近冻结侧管片安全系数降低,拱底附近安全系数降幅最大,为22.9%;土体解冻稳定后各管片安全系数增大但小于冻结前。(4)整个施工期间,地表最大隆起为2.18 mm,最大沉降为1 mm,管片最大上移量为2.3 mm,最大下沉量为0.9 mm,管片收敛变形最大值不超过3.4 mm,表明地铁联络通道冻结法施工具有较高的可靠性。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
石钰锋1
2 蔡家城1 张 涛3 张晗秋4 李君贤1 顾大均5
关键词盾构隧道   冻结法   联络通道   围岩压力   受力变形   现场测试     
Abstract: In order to ascertain how the freezing method used for construction of subway cross passage will affect the adjacent segments, a site test has been conducted at the 2# cross passage of the Yaohu East Station—Maqiu Station section of Nanchang Metro Line 1 East Extension project, and the water & earth pressure of adjacent segments,structural internal force, vertical displacement, clearance convergence and ground settlement have been monitored in long term. As the results indicate: (1) Before excavation of the cross passage, the frost heave force will cause the water & earth pressure outside the adjacent shield tunnel segment rings to increase. The maximum values of the pressure are 170 kPa and 150 kPa, which are increased by 11.1% and 15.4% as compared with the values before freezing. After stabilization of the soil mass, the maximum values of the water & earth pressure are 173 kPa and 148 kPa,which are increased by 12.4% and 13.8% as compared with the values before freezing. (2) Under the effect of stratum freezing, the maximum bending moment and axial force of the adjacent segment are -103.1 kN·m and 2 314 kN,which are increased by 28.09% and 19.8% as compared with the values before freezing. (3) Under the effect of the frost heave force, the safety factor of the segment at the frozen side is reduced, and the safety factor near the arch bottom is reduced by the greatest margin, which is 22.9%. After unfreezing and stabilization of the soil mass, the safety factor of each segment is increased, but still less than the value before freezing. (4) In the construction period, the maximum heave on the surface is 2.18 mm and the maximum settlement 1 mm. The maximum upward displacement of the segment is 2.3 mm and its maximum settlement 0.9 mm. The maximum value of convergence deformation of segment is no more than 3.4 mm. These results indicate that the freezing method used for construction of subway cross passage is highly feasible.
KeywordsShield tunnel,   Freezing method,   Cross passage,   Surrounding rock pressure,   Deformation by force,   Site test     
基金资助:国家自然科学基金面上项目(42177162).
作者简介: 石钰锋(1985-),男,博士,教授,主要从事隧道与地下工程科研及教学工作,E-mail: s074811156@126.com. 通讯作者:蔡家城(1999-),男,硕士研究生,主要从事基坑工程研究工作,E-mail:1119105321@qq.com.
引用本文:   
石钰锋1, 2 蔡家城1 张 涛3 张晗秋4 李君贤1 顾大均5 .冻结法地铁联络通道施工对邻近盾构隧道管片影响的测试分析[J]  现代隧道技术, 2024,V61(1): 190-199
SHI Yufeng1, 2 CAI Jiacheng1 ZHANG Tao3 ZHANG Hanqiu4 LI Junxian1 GU Dajun5 .Test and Analysis of the Effect of the Freezing Construction of Subway Cross Passage on Adjacent Shield Tunnel Segment[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(1): 190-199
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I1/190
 
没有本文参考文献
[1] 包小华1,2,3 袁槐岑1,2,3 陈湘生1,2,3 沈 俊1,2,3 郭建波4 沈 翔1,2,3 崔宏志1,2,3.水下盾构隧道建造与运维技术研究现状与展望[J]. 现代隧道技术, 2024,61(1): 16-35
[2] 张 庆1 甄文战1 封 坤2.大直径盾构隧道下穿既有高速公路桥涵影响分析[J]. 现代隧道技术, 2024,61(1): 137-145
[3] 郝鹏飞.预制整体式弧形件施工质量控制指标研究[J]. 现代隧道技术, 2024,61(1): 245-251
[4] 肖明清1, 3 封 坤2 王少锋1, 3 杨 昊2 郭文琦2.内部结构施作方式对公轨合建盾构隧道内爆炸动力响应的影响研究[J]. 现代隧道技术, 2024,61(1): 107-116
[5] 郑镇跡1 黄书华2 陈湘生1 张 良2 刘皓铭1 盛 健2 苏 栋1.超大直径盾构主隧道机械法联络通道特殊衬砌管片受力特性分析[J]. 现代隧道技术, 2024,61(1): 117-124
[6] 曾 毅1 高 越2,3 吴沛霖2,3 张小龙1 付艳斌2,3.既有盾构隧道抬升模型试验研究[J]. 现代隧道技术, 2024,61(1): 200-207
[7] 王德福.盾构滚刀切削桩基相互作用机理及关键参数分析研究——以海珠湾盾构隧道为例[J]. 现代隧道技术, 2024,61(1): 216-228
[8] 郇昊霖1 李培楠2 刘 俊1 宋兴宝3 秦 元3 寇晓勇3 翟一欣3.大直径盾构隧道内部装配式预制结构安装路径优化及应用[J]. 现代隧道技术, 2024,61(1): 236-244
[9] 艾 青1 李一轩1 朱俊易2.越江盾构隧道全寿命期碳排放特征与减排途径研究[J]. 现代隧道技术, 2023,60(6): 11-19
[10] 王承震1 丁万涛2,3 于文端1 王志成1 孙腾云1 王中荣2.越海泥水盾构隧道泥浆流变特征试验研究[J]. 现代隧道技术, 2023,60(6): 237-245
[11] 杨 钊1,2 高如超1,2 姬付全1,2 陈培帅1,2 李明鹏3.基于SegFormer模型的盾构隧道管片间缝高精度测量[J]. 现代隧道技术, 2023,60(6): 175-182
[12] 肖明清1 钟元元2 陈 鹏3 王 峻4 戚兆臣5 张卫斌6.盾构隧道管片接缝密封垫气密性提升试验研究[J]. 现代隧道技术, 2023,60(6): 262-268
[13] 薛光桥1,2 肖明清1,2 封 坤3 王少锋1,2 薛皓匀3 郭文琦3.特大直径双层公路盾构隧道管片-内部结构复合体系横向抗震性能研究[J]. 现代隧道技术, 2023,60(5): 67-77
[14] 赵 军1 杜世明2 王 允3 夏立锋2 魏新江4 韩同春5.可伸缩钢拱架在东岗特长公路隧道支护应用中的测试分析[J]. 现代隧道技术, 2023,60(5): 167-176
[15] 陈 龙 封 坤 吴柏翰 郭付康 王 维.大埋深盾构隧道结构受力现场实测分析[J]. 现代隧道技术, 2023,60(5): 148-157
Copyright 2010 by 现代隧道技术