[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2015, Vol. 52 Issue (3) :1-7    DOI:
研究与综述 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
盾构隧道建造阶段低碳化影响因子与措施研究
(1同济大学土木工程学院地下建筑与工程系,上海 200092;2上海隧道工程股份有限公司,上海 200082)
Study of Influential Factors and Measures for Low Carbonization During the Construction of Shield Tunnels
(1 Department of Geotechnical Engineering, School of Civil Engineering,Tongji University, Shanghai 200092; 2 Shanghai Tunnel Engineering Co. Ltd., Shanghai 200082)
Download: PDF (1023KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 目前,隧道碳排放主要是通过规划设计阶段的估算或竣工后隧道整体排放量的统计得到,较少考虑每一环隧道碳排放的差异性及其影响因素。文章基于排放系数法,对虹梅南路隧道施工现场能耗进行实时统计,计算出了该隧道工程建造阶段每一环实际碳排放,并结合地层与施工参数对施工碳排放环与环之间的差异性进行了分析探讨。结果表明: (1)盾构施工平均每环碳排放约为56 t,其中材料碳排放约占93%。背景工程通过埋深分档、减少构造钢筋等措施减少了约12 000 t碳排放(即200环的排放量); (2)对于施工碳排放,⑦2粉砂层中由于穿行阻力大、刀盘扭矩高、粉砂对于泥浆破坏强等因素导致隧道每环排放量约为⑤3粘质粉土层中的一倍。通过避免将隧道长距离埋设于⑦2层粉砂中可以有效降低其碳排放量值,而盾构推进距离、隧道埋深对其影响不大; (3)盾构停顿一天产生的碳排放约为4 400 kg,隧道施工过程中应着力提高盾构推进效率,避免盾构机长时间的停顿。盾构的日平均进度保证在3环以上,相比1环日平均进度可减少至少60%的环平均排放量。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
李乔松1
白云1
李林2
关键词:   
Abstract: In tunnel engineering at present, carbon emissions are generally estimated during the planning design stage or obtained by statistics of total emissions after completion. However, the difference of carbon emissions in each ring and relevant influential factors are seldom considered. For this paper, based on the emission coefficient method, real-time statistics were determined regarding the in-situ energy consumption of the South Hongmei Road tunnel, and the actual carbon emissions per ring were obtained. Furthermore, the difference of the actual carbon emissions in each ring is analyzed and discussed by considering the parameters of stratum and construction. The results show that: 1) the average carbon emission per ring of shield tunnelling is about 56 t, with material-generated carbon emissions being around 93%, and for the studied case the carbon emission was reduced by approximately 12 000 t(corresponding to the total emissions produced by 200 rings) by means of depth grading and steel-bar reduction; 2) for construction-generated carbon emissions, shield tunnelling in the ⑦2 silty sand layer features high penetration resistance, high cutterhead torque, and highly damaging effects on the slurry, so its carbon emission per ring is about twice of that of the ⑤3 clayey silt layer, and the carbon emissions can be effectively reduced by avoiding a long-distance tunnel buried in the ⑦2 silty sand layer, while the shield advance distance and the buried depth have little effect; and 3) the carbon emissions generated by a one-day stop of shield driving is about 4 400 kg, it is therefore important to improve the advancing efficiency of the shield and to avoid long shield stoppages during tunnel construction. The daily average shield advance rate should be more than three rings—this can reduce the average emissions per ring by at least 60% compared with a one-ring advance rate per day.
KeywordsShield machine,   Tunnelling,   Carbon emissions,   Emission coefficient method,   Low carbonization     
出版日期: 2014-10-11
基金资助:

基金项目:教育部“长江学者和创新团队发展计划”资助项目(IRT1029).

作者简介: 作者简介: 李乔松(1989-),男,硕士研究生,主要从事岩土地下工程等方面的科研工作,E-mail:powerlqs@163.com
引用本文:   
李乔松1, 白云1, 李林2 .盾构隧道建造阶段低碳化影响因子与措施研究[J]  现代隧道技术, 2015,V52(3): 1-7
LI Qiao-Song-1, BAI Yun-1, LI Lin-2 .Study of Influential Factors and Measures for Low Carbonization During the Construction of Shield Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2015,V52(3): 1-7
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2015/V52/I3/1
 
没有本文参考文献
[1] 刘飞香 1,2.SCDZ133智能型隧道多功能作业台车及其施工技术[J]. 现代隧道技术, 2019,56(4): 1-7
[2] 周文波 吴惠明 赵 峻.泥岩地层常压刀盘盾构的掘进策略与分析[J]. 现代隧道技术, 2019,56(4): 8-15
[3] 陈卓立 1,2 朱训国 1,2 赵德深 1,2 王云平 1,2.深埋隧洞让压支护结构的锚固机理探究[J]. 现代隧道技术, 2019,56(4): 16-22
[4] 王全胜.矩形盾构法隧道管片分块案例分析及分块原则[J]. 现代隧道技术, 2019,56(4): 23-29
[5] 张 恒 1 朱亦墨 1 林 放 1 陈寿根 1 杨家松 2.基于Q系统的地下洞库中台阶最佳开挖高度研究[J]. 现代隧道技术, 2019,56(4): 30-37
[6] 李 好.大断面岩溶隧道贯通段地质情况的无线电波透视试验探测[J]. 现代隧道技术, 2019,56(4): 38-42
[7] 岑培山 1 田坤云 2 王喜民 3.蒙华铁路阳山隧道瓦斯危害性评估研究[J]. 现代隧道技术, 2019,56(4): 43-49
[8] 朱建峰 1 宫全美 2.软土地层盾构隧道长期沉降离心试验研究[J]. 现代隧道技术, 2019,56(4): 49-55
[9] 陈柚州 1 任 涛 2 邓 朋 2 王 斌 3.基于人工蜂群优化小波神经网络的隧道沉降预测[J]. 现代隧道技术, 2019,56(4): 56-61
[10] 王登茂 滕振楠 田志宇 陈志学.桃园至巴中高速公路八庙隧道非常规岩爆段病害处治与设计反思[J]. 现代隧道技术, 2019,56(4): 62-68
[11] 吴树元 1 程 勇 1 谢全敏 2 刘继国 1 陈必光 1.西藏米拉山隧道围岩大变形成因分析[J]. 现代隧道技术, 2019,56(4): 69-73
[12] 王 睢 1,2,3 钟祖良 3 刘新荣 3 吴 波 1,2,4 赵勇博 1,2 李占涛 1,2.基于D-P准则有压圆形衬砌隧洞弹塑性解[J]. 现代隧道技术, 2019,56(4): 74-80
[13] 李 明 严松宏 潘春阳 张旭斌.富水大断面黄土隧道开挖流固耦合效应分析[J]. 现代隧道技术, 2019,56(4): 81-88
[14] 张 凯 1 陈寿根 2 霍晓龙 3 谭信荣 4.岩溶地区隧道涌水风险的可拓评价模型及应用[J]. 现代隧道技术, 2019,56(4): 89-96
[15] 李 杰 1 张 斌 1 付 柯 1 马 超 1 郭京波 1 牛得草 2.基于现场掘进数据的复合地层盾构掘进性能预测方法研究[J]. 现代隧道技术, 2019,56(4): 97-104
Copyright 2010 by 现代隧道技术