[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2019, Vol. 56 Issue (1) :14-21    DOI:
综述与探讨 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
岩质隧道深浅埋划分方法及判别标准探讨
(1陆军勤务学院,重庆 401311;2中建隧道建设有限公司,重庆 401147;3空军工程大学,西安 710038;4福建省闽武长城岩土工程有限公司,福州 350012)
Discussion on Classification Method and Criterion for the Deep-buried and Shallow-buried Rock Tunnels
(1 Logistical Engineering University of PLA, Chongqing 401311;2 China Construction Tunnel Corp. Ltd., Chongqing 401147; 3 Air Force Engineering University, Xi′an 710038; 4 Fujian Minwu Great Wall Geotechnical Engineering Co., Ltd., Fuzhou 350012)
Download: PDF (2286KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 传统的深埋与浅埋隧道划分方法以普氏压力拱理论为基础,由于普氏理论的局限性,这种划分方法不尽合理。鉴于此,文章将有限元极限分析法应用于隧道深浅埋划分中,提出了隧道深浅埋划分的三条原则。对于Ⅳ级、Ⅴ级围岩的岩质隧道,根据隧道的破坏模式划分深埋与浅埋,破裂面贯通至地表即为浅埋隧道,破裂面没有贯通至地表即为深埋隧道,并利用有限元强度折减法求出浅埋隧道压力拱高度,以此作为深浅埋分界线;对于围岩等级高的岩质隧道,以无衬砌隧道稳定安全系数来划分深浅埋,安全系数大于等于1.5时为深埋隧道,安全系数小于1.5时还要根据破坏模式进行深浅埋判断。此外,深浅埋隧道划分还应考虑环境、施工、地质构造、不稳定块体等因素的影响,由此可能造成围岩整体塌落,形成松散压力。最后,文章建议对于深埋隧道可按弹塑性数值分析计算,而对浅埋隧道除按弹塑性数值分析外,还需按浅埋松散荷载依据荷载-结构模式分析,以确保安全。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词:   
Abstract: The traditional classification for the deep-buried and shallow-buried tunnels is based on the Protodya? konov′s pressure arch theory and not reasonable enough due to its limitation of this theory. In view of this the finite element limit analysis method was applied to the classification for the deep-buried and shallow-buried tunnels, and three principles were put forward. For the rock tunnel with surrounding rock of Ⅳ and Ⅴ, the classification for the deep-buried and shallow-buried tunnels is based on the failure modes of tunnel, it is defined as the shallow-buried tunnel if the fracture plane cuts through ground surface while it is defined as the deep-buried one if the fracture plane doesn′t cut through ground surface, the height of pressure arch of the shallow-buried tunnel obtained by using FEM strength reduction method can be taken as the dividing line for the shallow-buried and deep-buried tunnels.For the rock tunnel with surrounding rock of higher grade, the deep-buried and shallow-buried tunnels are defined according to the stability safety factor of the unlined tunnel, it is defined as the deep-buried tunnel when the stability safety factor is more than or equals 1.5 while the failure mode should also be considered to define them when the stability safety factor is less than 1.5. In addition, the division of deep-buried and shallow-buried tunnels should still consider the effects of environment, construction, geological structure, unstable block, which will cause the surrounding rock collapse and form loose pressure. At last, it is suggested that for the deep-buried and shallow-buried tunnels it can be calculated by elastic-plastic numerical analysis method, but for the shallow-buried tunnel it should also be analyzed according to the load-structure model to ensure safety.
KeywordsDeep-buried tunnel,   Shallow-buried tunnel,   Classification criterion,   Protodyakonov&prime,   s pressure arch,   FEM strength reduction,   Height of shallow-buried pressure arch,   Stability safety factor     
作者简介: 作者简介:邱陈瑜(1981-),男,博士研究生,主要从事隧道与地下工程方面的研究工作,E-mail:553699316@qq.com. 通讯作者:赵尚毅(1969-),男,博士,副教授,主要从事岩土工程稳定性分析及其数值模拟研究工作,E-mail:36283162@qq.com.
引用本文:   
.岩质隧道深浅埋划分方法及判别标准探讨[J]  现代隧道技术, 2019,V56(1): 14-21
.Discussion on Classification Method and Criterion for the Deep-buried and Shallow-buried Rock Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2019,V56(1): 14-21
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2019/V56/I1/14
 
没有本文参考文献
[1] 刘飞香 1,2.SCDZ133智能型隧道多功能作业台车及其施工技术[J]. 现代隧道技术, 2019,56(4): 1-7
[2] 周文波 吴惠明 赵 峻.泥岩地层常压刀盘盾构的掘进策略与分析[J]. 现代隧道技术, 2019,56(4): 8-15
[3] 陈卓立 1,2 朱训国 1,2 赵德深 1,2 王云平 1,2.深埋隧洞让压支护结构的锚固机理探究[J]. 现代隧道技术, 2019,56(4): 16-22
[4] 王全胜.矩形盾构法隧道管片分块案例分析及分块原则[J]. 现代隧道技术, 2019,56(4): 23-29
[5] 张 恒 1 朱亦墨 1 林 放 1 陈寿根 1 杨家松 2.基于Q系统的地下洞库中台阶最佳开挖高度研究[J]. 现代隧道技术, 2019,56(4): 30-37
[6] 李 好.大断面岩溶隧道贯通段地质情况的无线电波透视试验探测[J]. 现代隧道技术, 2019,56(4): 38-42
[7] 岑培山 1 田坤云 2 王喜民 3.蒙华铁路阳山隧道瓦斯危害性评估研究[J]. 现代隧道技术, 2019,56(4): 43-49
[8] 朱建峰 1 宫全美 2.软土地层盾构隧道长期沉降离心试验研究[J]. 现代隧道技术, 2019,56(4): 49-55
[9] 陈柚州 1 任 涛 2 邓 朋 2 王 斌 3.基于人工蜂群优化小波神经网络的隧道沉降预测[J]. 现代隧道技术, 2019,56(4): 56-61
[10] 王登茂 滕振楠 田志宇 陈志学.桃园至巴中高速公路八庙隧道非常规岩爆段病害处治与设计反思[J]. 现代隧道技术, 2019,56(4): 62-68
[11] 吴树元 1 程 勇 1 谢全敏 2 刘继国 1 陈必光 1.西藏米拉山隧道围岩大变形成因分析[J]. 现代隧道技术, 2019,56(4): 69-73
[12] 王 睢 1,2,3 钟祖良 3 刘新荣 3 吴 波 1,2,4 赵勇博 1,2 李占涛 1,2.基于D-P准则有压圆形衬砌隧洞弹塑性解[J]. 现代隧道技术, 2019,56(4): 74-80
[13] 李 明 严松宏 潘春阳 张旭斌.富水大断面黄土隧道开挖流固耦合效应分析[J]. 现代隧道技术, 2019,56(4): 81-88
[14] 张 凯 1 陈寿根 2 霍晓龙 3 谭信荣 4.岩溶地区隧道涌水风险的可拓评价模型及应用[J]. 现代隧道技术, 2019,56(4): 89-96
[15] 李 杰 1 张 斌 1 付 柯 1 马 超 1 郭京波 1 牛得草 2.基于现场掘进数据的复合地层盾构掘进性能预测方法研究[J]. 现代隧道技术, 2019,56(4): 97-104
Copyright 2010 by 现代隧道技术