Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2014, Vol. 51 Issue (1) :97-104    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Numerical Simulation of the Rockburst Mechanism in the Meihuashan Tunnel
(1 China Railway No.5 Engineering Group Co. Ltd, Guiyang 364000; 2 School of Engineering and Technology, China University of Geosciences, Beijing 100083; 3 The First Monitoring Center Institute of Crustal Dynamics, The Institute of Crustal Dynamics, Tianjin 300180)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Affected by staged excavation, stress-strain nonlinear variation may occur inside the surrounding rock of a tunnel. In high-ground-stress areas, this mechanical effect tends to be even more obvious and can cause serious geological disasters like rockbursts and wall caving, etc. Taking the construction of the Meihuashan tunnel in Fujian as an example, this paper analyzes the interaction of the excavation steps and the change rule of the 3D stress field and strain field in the tunnel by establishing a 3D excavation numerical model with 3D-Sigmasoftware, using the measured stress data as a boundary condition and determining the inputs of the rock mass with the Hoek-Brown strength criterion. The results show that: because of high ground stress, compressive stress concentration occurs at the tunnel crown and shear stress concentration occurs at the spandrel, which may cause brittle failure at the tunnel wall; previously excavated tunnel sections may be affected by subsequent excavation, making the stress concentration effect more obvious and the failure of the surrounding rock more serious; the actual rockburst locations correspond with the locations of maximum compressive stress concentration and maximum shear stress concentration in simulation analysis. The numerical simulation can clearly reveal the mechanism and the possible law of the rock burst, providing strong technical support for engineering applications.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
ZHANG Yi-Yu-1
Xing-Bo-Rui-2
Song-Cheng-Ke-3
Keywords Railway tunnel   Numerical simulation   Rock burst mechanism      
Abstract: Affected by staged excavation, stress-strain nonlinear variation may occur inside the surrounding rock of a tunnel. In high-ground-stress areas, this mechanical effect tends to be even more obvious and can cause serious geological disasters like rockbursts and wall caving, etc. Taking the construction of the Meihuashan tunnel in Fujian as an example, this paper analyzes the interaction of the excavation steps and the change rule of the 3D stress field and strain field in the tunnel by establishing a 3D excavation numerical model with 3D-Sigmasoftware, using the measured stress data as a boundary condition and determining the inputs of the rock mass with the Hoek-Brown strength criterion. The results show that: because of high ground stress, compressive stress concentration occurs at the tunnel crown and shear stress concentration occurs at the spandrel, which may cause brittle failure at the tunnel wall; previously excavated tunnel sections may be affected by subsequent excavation, making the stress concentration effect more obvious and the failure of the surrounding rock more serious; the actual rockburst locations correspond with the locations of maximum compressive stress concentration and maximum shear stress concentration in simulation analysis. The numerical simulation can clearly reveal the mechanism and the possible law of the rock burst, providing strong technical support for engineering applications.
Keywords Railway tunnel,   Numerical simulation,   Rock burst mechanism      
published: 2013-05-30
Cite this article:   
ZHANG Yi-Yu-1, Xing-Bo-Rui-2, Song-Cheng-Ke-3 .Numerical Simulation of the Rockburst Mechanism in the Meihuashan Tunnel[J]  MODERN TUNNELLING TECHNOLOGY, 2014,V51(1): 97-104
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2014/V51/I1/97
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY