Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2023, Vol. 60 Issue (4) :246-253    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on the Growth Mechanism of Calcium Carbonate Crystal of Karst Water on the Tunnel Concrete Substrate
(1.China Railway Academy Co., Ltd., Chengdu 610032; 2.School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031; 3.School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031; 4.Chengdu Yanghua Yuandong New Materials Science and Technology Co., Ltd., Chengdu 610031)
Download: PDF (5399KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract A large number of crystals on the tunnel concrete substrate in the karst area will greatly increase the maintenance cost of the tunnel. Combined with theoretical analysis and test simulation methods, the process and principle of crystal formation and attachment on the tunnel concrete substrate were analyzed through observation of the changes in the microstructure of crystals on the surface and section of mortar blocks. The results showed that the growth process of calcium carbonate crystals on the concrete substrate could be split into 3 stages: initial stage, middle stage and later stage of calcium carbonate crystallization. At the initial stage, the concrete surface reduced the surface energy barrier at the time of nucleation, creating conducive conditions of heterogeneous nucleation for the nucleation of calcium carbonate crystals; at the middle stage, a great number of bonds were formed and a large amount of energy was released in uneven positions (holes, recesses, etc.) on the concrete surface, which was conducive to the stable growth of crystal nucleus, and crystals were more inclined to nucleate and adhere; after a transitional layer was formed on the concrete surface at the later stage, the calcium carbonate crystallization process was closer to homogeneous nucleation, and in this case, the solidification of crystal particles on the transitional layer accelerated and these particles were firmly bonded to the substrate..
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LI Wei1 JIANG Yajun2 LIU Shijun2 WANG Cuijuan3 XIAO Huarong4 CUI Hengtao2
KeywordsTunnel engineering   Crystal growth mechanism   Experimental study   Concrete substrate   Calcium car? bonate crystallization     
Abstract: A large number of crystals on the tunnel concrete substrate in the karst area will greatly increase the maintenance cost of the tunnel. Combined with theoretical analysis and test simulation methods, the process and principle of crystal formation and attachment on the tunnel concrete substrate were analyzed through observation of the changes in the microstructure of crystals on the surface and section of mortar blocks. The results showed that the growth process of calcium carbonate crystals on the concrete substrate could be split into 3 stages: initial stage, middle stage and later stage of calcium carbonate crystallization. At the initial stage, the concrete surface reduced the surface energy barrier at the time of nucleation, creating conducive conditions of heterogeneous nucleation for the nucleation of calcium carbonate crystals; at the middle stage, a great number of bonds were formed and a large amount of energy was released in uneven positions (holes, recesses, etc.) on the concrete surface, which was conducive to the stable growth of crystal nucleus, and crystals were more inclined to nucleate and adhere; after a transitional layer was formed on the concrete surface at the later stage, the calcium carbonate crystallization process was closer to homogeneous nucleation, and in this case, the solidification of crystal particles on the transitional layer accelerated and these particles were firmly bonded to the substrate..
KeywordsTunnel engineering,   Crystal growth mechanism,   Experimental study,   Concrete substrate,   Calcium car? bonate crystallization     
Cite this article:   
LI Wei1 JIANG Yajun2 LIU Shijun2 WANG Cuijuan3 XIAO Huarong4 CUI Hengtao2 .Study on the Growth Mechanism of Calcium Carbonate Crystal of Karst Water on the Tunnel Concrete Substrate[J]  MODERN TUNNELLING TECHNOLOGY, 2023,V60(4): 246-253
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2023/V60/I4/246
 
No references of article
[1] WANG Jianyu.For the Harmony between Tunnelling and Geological Body ——Discussion on Focused Hot Issues in Conventional Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 1-5
[2] ZHENG Kunlong1,2 WANG Jianyun2 LINGHU Yan1 YANG Xiaohua3 DING Yate1 CHEN Kun1 WANG Zhifeng3.Experimental Study on Prevention and Treatment of Tunnel Leakage with Rapid Setting Permeable Crystallographic Grouts[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 254-263
[3] JI Yunpeng1,2 FANG Lingguo3 TANG Haotian4 ZHANG Xingli1,2 WANG Xiangjin1,2 BAI Yuntian1,2.Study on Forces on Pipe Umbrella Support in the Whole Process of Tunnel Excavation[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 123-138
[4] WANG Xiuling1,2.Model Experimental Study on Interaction Characteristics of Rock and Structure in Weak Rock Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 164-174
[5] LIU Wanlin1 SHANG Mingming2 WANG Quansheng2 WANG Donghong2 WEN Shiyu1.Comparison and Selection of Construction Schemes for the Boom-type Roadheader in Small-section Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 266-273
[6] ZHOU Baochun1,2.SUMO-based Simulation and Evaluation of Traffic Organization Scheme for Yuelongmen Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 274-281
[7] SUN Yi.Analysis of Stress Characteristics and Stability of Initial Support Arch of Tunnels with the Spatial Effect of Truss Structure Taken into Consideration[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 34-43
[8] JIANG Yajun1 ZHENG Yi1 YU Liangmin1 CUI Hengtao1 CAO Danyang2.Effect of Glass Dust on the Resistance of Concrete to Calcium Corrosion under Contact Corrosion Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 223-229
[9] SUN Huibin1 ZHANG Jianli2 YANG Huixiang1 YANG Hui2 WANG Lei3 WEI Jun2 LIN Weinan3.A Study on the Bearing Characteristics of Composite Concrete-filled Steel Tube Support Structure in Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 103-114
[10] YAN Bo1 ZHANG Junru2 ZHANG Xinjin1 PENG Lei1 Ning Bo1.A Study on the Stability of Surrounding Rocks in Construction of Undercrossing Tunnels with Super-large Section Based on Radial Displacement Release Rate of Surrounding Rocks[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 115-124
[11] CUI Guangyao1 MA Jianfei2 NING Maoquan3,4 TANG Zaixing3,4 LIU Shunshui3,4 TIAN Yuhang1.A Study on Optimization of Reinforcement Scheme for Adjacent Construction of Super-large Rectangular Pipe Jacking Shield Tunnel in Soft Ground[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 178-184
[12] YU Li1,2 WANG Song1,2 LUO Xiang1,2 WANG Xiaoyong3 GUO Xiaohan1,2 DUAN Ruyu1,2.A Study on Geometric Design Parameters of Grille Sunshades in Highway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(1): 34-46
[13] JIANG Shuping1,2 LI Jing1 ZHANG Dandan1 CAO Peng2.Experimental Study on the Law of Heat Transfer of Tube Structure of the Steel-concrete-steel Immersed Tube Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(1): 168-178
[14] XU Fuqiang DU Zhigang CHEN Can.Distribution and Development Characteristics of Urban Road Tunnels in China[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(6): 35-41
[15] SONG Zhanping1,2,3 PEI Jiafeng1,3 PAN Hongwei2,4 SUN Ze1,3 DING Libo5.Analysis on the Support Effect of Advance Large Pipe Umbrella at Portal Section of Shallow Tunnel under Unsymmetrical Load[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(6): 86-96
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY