Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2024, Vol. 61 Issue (5) :99-110    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Intelligent Recognition Method for Tunnel Smooth Blasting Borehole Residues Based on Cascade Mask Region-Convolutional Neural Network-ResNeSt
(1.Guizhou Road and Bridge Group Co., Ltd.,Guiyang 550001; 2. School of Civil Engineering, Central South University, Changsha 410075; 3.Chongqing Geological Exploration and Mineral Resources Development Group Inspection and Testing Co., Ltd., Chongqing 400700)
Download: PDF (10292KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In order to solve the problems such as insufficient recognition accuracy, low robustness, and slow detec‐ tion speed in existing methods for recognizing tunnel borehole residues, an algorithm named Cascade Mask RegionConvolutional Neural Network (Cascade Mask R-CNN) is proposed. This algorithm is based on the Cascade Mask R-CNN instance segmentation algorithm and utilizes the advanced ResNeSt network as its backbone (Cascade Mask R-CNN-S) to enhance the feature extraction capability, thereby improving recognition accuracy. Multi-scale training methods and learning rate adjustment strategies are employed to train the network, resulting in an intelligent recognition model that enhances the robustness of the recognition algorithm. The model's performance was compared to traditional algorithms like Cascade Mask R-CNN and Mask R-CNN using mean average precision (mAP) as the evaluation metric. The study shows that the improved algorithm achieves an average precision value of 0.415 for bounding boxes (b_mAP(50)) and 0.350 for segmentation (s_mAP(50)) at an IoU threshold of 0.5. Compared to traditional instance segmentation algorithms, the improved algorithm significantly enhances the accuracy of tunnel borehole residue recognition, with a length recognition error of only 8.3%. It also demonstrates better robustness and anti-interference capabilities in the complex working environment of tunnels.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KUANG Huajiang1 LIU Guanghui1 LI Dalin1 XU Xiao1 YANG Weikang1 YANG Tingfa1 DENG Xingxing1ZHAGN Yunbo2 TIAN Maohao3
KeywordsTunnel engineering   Borehole residue   Instance segmentation   Deep learning   Neural networks     
Abstract: In order to solve the problems such as insufficient recognition accuracy, low robustness, and slow detec‐ tion speed in existing methods for recognizing tunnel borehole residues, an algorithm named Cascade Mask RegionConvolutional Neural Network (Cascade Mask R-CNN) is proposed. This algorithm is based on the Cascade Mask R-CNN instance segmentation algorithm and utilizes the advanced ResNeSt network as its backbone (Cascade Mask R-CNN-S) to enhance the feature extraction capability, thereby improving recognition accuracy. Multi-scale training methods and learning rate adjustment strategies are employed to train the network, resulting in an intelligent recognition model that enhances the robustness of the recognition algorithm. The model's performance was compared to traditional algorithms like Cascade Mask R-CNN and Mask R-CNN using mean average precision (mAP) as the evaluation metric. The study shows that the improved algorithm achieves an average precision value of 0.415 for bounding boxes (b_mAP(50)) and 0.350 for segmentation (s_mAP(50)) at an IoU threshold of 0.5. Compared to traditional instance segmentation algorithms, the improved algorithm significantly enhances the accuracy of tunnel borehole residue recognition, with a length recognition error of only 8.3%. It also demonstrates better robustness and anti-interference capabilities in the complex working environment of tunnels.
KeywordsTunnel engineering,   Borehole residue,   Instance segmentation,   Deep learning,   Neural networks     
Cite this article:   
KUANG Huajiang1 LIU Guanghui1 LI Dalin1 XU Xiao1 YANG Weikang1 YANG Tingfa1 DENG Xingxing1ZHAGN Yunbo2 TIAN Maohao3 .Intelligent Recognition Method for Tunnel Smooth Blasting Borehole Residues Based on Cascade Mask Region-Convolutional Neural Network-ResNeSt[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(5): 99-110
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2024/V61/I5/99
 
No references of article
[1] WANG Sheng1,2,3,4 WEI Qin1,2 LI Liping3.Catastrophic Mechanisms and Research Development Trends of Water and Mud Inrushes in Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 15-25
[2] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[3] ZOU Yulin1, 2 LIU Jing1 WANG Bo2 CHENG Ziquan2 XIE Zuodong2 GU Hao3 WANG Kaiyue.Study on the Causes and Prevention Measures of Water and Mud Inrush Disasters in Sichuan Yanjiang Expressway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 259-269
[4] LUO Zhenhan1 LIAO Shaoming1 ZHAO shuai.Hybrid Prediction Model for Shield Machine Attitude Based on TPE-XGBoost-GRU and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 88-99
[5] QIN Tiange 1, 2 WU Li CHEN Qian1 XIA Zhen1 LIU Shiya1, 2 CAI Xin1.Research Status and Development Trends of Intelligent Construction System for Drill and Blast Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 1-10
[6] LI Jiuyuan1 GAO Fayong1 MA Yongtao1 TANG Mingyang2 FU Kang3 LI Yuheng2 XUE Yiguo2.Study on Surrounding Rock Identification and Excavation Speed Prediction in TBM Tunnels Based on the Interaction Mechanism of Rock-Machine Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 75-87
[7] WANG JingYong1,2 WANG Ping2 YANG Jin2 JI Feng3.Optimization Study on the Support Structure of a Tunnel in Carbonaceous Phyllite Using Physical Model Tests[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 160-169
[8] WANG Shuaishuai FU Yifan2,3 XU Yong1 SHI Jingfeng1 GUO Chun2,3.Parametric Study on Air Chamber Ventilation in Tunnelling Using Relay Fans for Airflow Distribution[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 240-248
[9] YUAN Quanyou1 CHEN Ziquan1 YUAN Song1,2 WANG Xibao2 JIANG Changwei1.Study on the Distribution Law of Geotress Field and Classification of Disaster Prediction in Super Long and Deep-buried Highway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 49-59
[10] ZHANG Meining1,2 SONG Zhanping1,2,3 YUE Bo4 LI Xu1,2,3 ZHAO Yirui2 TAO Lei5.Research on Construction and Application of a Rapid Tunnel Surrounding Rock Classification Model Based on Real-time Images and Advanced Geological Information[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 87-97
[11] YANG Cunbin1,2 REN Yang,1,2 WU Yuehua1,2 HE Wanchao1,2 LI Tianbin1,2.Dynamic Intelligent Prediction of Tunnel Surrounding Rock Geological Information Based on M-LSTM Method[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(1): 74-82
[12] WANG Haokang1,2 SHEN Yusheng1,2 PAN Xiaohai1,2 CHANG Mingyu1,2 ZHANG Xinyang1,2 SU Wei3.Experimental Study on Dynamic Characteristics of Tunnels Crossing Multi-fault Fracture Zones in Strong Earthquake Regions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(1): 212-220
[13] WANG Lichuan1,2 GE Lihui3 WANG Haiyan2 KONG Chao4 LI Qingbin1 WANG Yuntao3 LIU Yufei1.Construction Methods of Longitudinal Synchronous Grouting for Tunnel Crown Secondary Lining Voids[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 269-277
[14] ZHANG Chengyou1 WANG Bo1 DU Zehao1 GAO Junhan1 TAN Lihao2.Analysis of the Suitability of Different Anchor Bolt Support Systems for Rockburst Mitigation and Optimization of Anchor Bolt Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 64-73
[15] ZHANG Xinyang1, 2 SHEN Yusheng1, 2 CHANG Mingyu1, 2 WANG Haokang1, 2 PAN Xiaohai1, 2 WANG Yanyan1, 2.Mix Proportion Design of Similar Materials for Tunnel Surrounding Rocks Based on GA-BP Neural Network[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 82-91
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY