Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2019, Vol. 56 Issue (5) :114-121    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Influence of Air Duct Arrangement on Gas Concentration in the Large-section Gas Tunnel
(1 Safety Engineering College, Chongqing University of Science and Technology, Chongqing 401331; 2 Chongqing Energy Investment Group Science & Technology Co., Ltd., Chongqing 400060; 3 China University of Mining & Technology (Beijing), Beijing 100083)
Download: PDF (3478KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In order to optimize the air duct arrangement for the large-section gas tunnel to improve ventilation con? dition at tunnel face, a calculation of required air volume and selection of fan type were conducted by taking the Liangfengya tunnel as an example, then a hydrodynamic analysis model was established by FLUENT software to study the variation laws of gas concentration and air velocity of the large-section tunnel and the effect of air duct arrangement on airflow field and gas distribution in condition of forced ventilation, in consequence the optimal arrangement of air duct was determined. The results show that for the large-section gas tunnel the distributions of gas concentration and air velocity are very uneven in the same section; the influence range of recirculation zone in the large-section gas tunnel is positively related to the distance between air duct and tunnel face; the distance between the place where gas concentration is stable and tunnel face increases with an increase of the distance between air duct and tunnel face; for this tunnel the optimum distance from the outlet of air duct to the tunnel face is about 2.5 S(30 m) and it is 15-20 m longer compared with that of the small-section tunnel, the place where gas concentration is the lowest is around 2 m away from the tunnel face; The gas concentration at the tunnel section shows a tendency of‘decrease-increase-balance?? with an increasing of Ly.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LIU Chun1 DU Junsheng1 GUO Chenye1
2
3 LIU Shang1
KeywordsLarge-section gas tunnel   Gas distribution   Air duct arrangement   Gas emission;Tunnel ventilation     
Abstract: In order to optimize the air duct arrangement for the large-section gas tunnel to improve ventilation con? dition at tunnel face, a calculation of required air volume and selection of fan type were conducted by taking the Liangfengya tunnel as an example, then a hydrodynamic analysis model was established by FLUENT software to study the variation laws of gas concentration and air velocity of the large-section tunnel and the effect of air duct arrangement on airflow field and gas distribution in condition of forced ventilation, in consequence the optimal arrangement of air duct was determined. The results show that for the large-section gas tunnel the distributions of gas concentration and air velocity are very uneven in the same section; the influence range of recirculation zone in the large-section gas tunnel is positively related to the distance between air duct and tunnel face; the distance between the place where gas concentration is stable and tunnel face increases with an increase of the distance between air duct and tunnel face; for this tunnel the optimum distance from the outlet of air duct to the tunnel face is about 2.5 S(30 m) and it is 15-20 m longer compared with that of the small-section tunnel, the place where gas concentration is the lowest is around 2 m away from the tunnel face; The gas concentration at the tunnel section shows a tendency of‘decrease-increase-balance?? with an increasing of Ly.
KeywordsLarge-section gas tunnel,   Gas distribution,   Air duct arrangement,   Gas emission;Tunnel ventilation     
Cite this article:   
LIU Chun1 DU Junsheng1 GUO Chenye1, 2, 3 LIU Shang1 .Influence of Air Duct Arrangement on Gas Concentration in the Large-section Gas Tunnel[J]  MODERN TUNNELLING TECHNOLOGY, 2019,V56(5): 114-121
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2019/V56/I5/114
 
No references of article
[1] FAN Lei.Study on the Key Techniques for Comprehensive Control of Heat Harm of the Deep-buried and Super-long Tunnel with High Ground Temperature[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 1-10
[2] GAO Juru1 ZHANG Bo1 WANG Yao1 QU Haobo1 YAO Zhijun2.Study on the Key Techniques for Improving Working Environment of the Extra-long Highway Tunnels in High Altitude Areas[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 11-18
[3] LIU Xian1 LI Haitao1 GUAN Panfeng2 YANG Zhihao2.Research on Design Parameters for Shield Tunnel Lining Structure with Quick Connectors[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 19-26
[4] LI Qiang1 GAN Penglu2,3 ZHONG Xiaochun4.Study on Effect of Backfilling Grouting Thickness on Anti-floating of the Shield Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 27-35
[5] LI Rongxin1 CHEN Huawei2 ZHOU Songyuan1 LIU Xinping1.Analysis on the Genesis of Gas in the Tunnel with Oil and Gas and Its Safety Management[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 36-40
[6] TANG Bin.Research on the Distribution Characteristics and Migration Law of Shallow Natural Gas of Longquanshan Tunnel on Chengdu Metro[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 41-46
[7] QIN Liang1 ZHANG Qingchao2.Physical Simulation of Tunnel Advance Geological Prediction by Transient Electromagnetic Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 47-51
[8] ZHANG Minqing LI Shu LIU Juncheng.Research and Development of the Embedded Rubber Waterstops Reinforced with Horizontally Built-in Steel Plates[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 52-56
[9] MA Shilong WU Mingying YAO Zhaoming.Study on Creep Test and Empirical Damage Model of Artificial Frozen Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 57-62
[10] MA Li1 LI Sheng2 WANG Qicai2 YU Bentian2 LIU Yapeng2 WANG Qingshi2.Study on Earth Pressure Difference Law of Load Relieving Structure of the Rectangular and Arched High-filled Loess Open Cut Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 63-69
[11] GUO Jian1,2 YANG Zhiguo1,2 KANG Fengxue3.Analysis of Deformation Stability Reliability of Tunnel Surrounding Rocks Based on Vector Projection Response Surface Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 70-77
[12] LIU Mingcai.Study on Stability of the Support System with Anchor Bolts and Shotcrete under Overbreak and Underbreak Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 78-84
[13] YU Jianxin1 LIU Huanchun2 WEI Haixia1 CHEN Chen2.On Mutual Dynamic Effect of Tunnel Blasting Construction Adjacent to Existing Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 85-92
[14] XIE Liguang1 YANG Qun2 SHENG Yong1 TANG Fujun1.Exploration on the Equilibrium Evaluation Model for the Health Status of Road Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 93-98
[15] SUN Haoxuan1 LI Peixian1 CUI Ximin1 YAO Dehua2 XIAO Wu3.Analysis of the Effect of Underground Coal Mining on the Bayueshan Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(6): 99-106
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY