Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (1) :195-199    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Analysis on Gas Characteristics of the Sichuan Red-bed Section of ChengduGuiyang Railway and Suggestion on Division of Gas Working Areas in the Survey Stage
(CCCC Railway Design and Research Institute Co., Ltd., Beijing 100000)
Download: PDF (1080KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Combining with the borehole gas concentration tests for the Sichuan red-bed section of the Chengdu-Gui? yang Railway, this paper analyzes its correlation with the stratum chronology geological structure, and tunnel depth on the basis of data statistics, and puts forward the suggestion to qualitatively and quantitatively divide gas working areas. The results show that the correlation between the tunnel gas concentration and the stratum chronology is not significant in the Sichuan red-bed section of the Chengdu-Guiyang Railway (except coal-bearing strata); geological structure plays a controlling role in gas transport and accumulation; and the positive correlation between the gas concentration and the tunnel depth is significant. According to the above conclusions, it could qualitatively divide the gas working areas according to the geological structure and mapping information collected during the survey stage, and quantitatively divide the gas working areas according to the gas concentration test results. The final categorization of gas working areas can be determined by combining the qualitative and quantitative results.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
SUN Yi
KeywordsChengdu-Guiyang Railway   Red-bed section   Railway Tunnel   Gas working areas     
Abstract: Combining with the borehole gas concentration tests for the Sichuan red-bed section of the Chengdu-Gui? yang Railway, this paper analyzes its correlation with the stratum chronology geological structure, and tunnel depth on the basis of data statistics, and puts forward the suggestion to qualitatively and quantitatively divide gas working areas. The results show that the correlation between the tunnel gas concentration and the stratum chronology is not significant in the Sichuan red-bed section of the Chengdu-Guiyang Railway (except coal-bearing strata); geological structure plays a controlling role in gas transport and accumulation; and the positive correlation between the gas concentration and the tunnel depth is significant. According to the above conclusions, it could qualitatively divide the gas working areas according to the geological structure and mapping information collected during the survey stage, and quantitatively divide the gas working areas according to the gas concentration test results. The final categorization of gas working areas can be determined by combining the qualitative and quantitative results.
KeywordsChengdu-Guiyang Railway,   Red-bed section,   Railway Tunnel,   Gas working areas     
Received: 2021-08-27;
Cite this article:   
SUN Yi .Analysis on Gas Characteristics of the Sichuan Red-bed Section of ChengduGuiyang Railway and Suggestion on Division of Gas Working Areas in the Survey Stage[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(1): 195-199
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I1/195
 
No references of article
[1] ZHANG Huan1, 2 ZHANG Shishu3 LI Tianbin1, 2 YANG Gang1, 2 LI Shisen1, 2 XIAO Huabo3 CHEN Weidong3.GAPSO-LightGBM-based Intelligent Prediction Method of Surrounding Rock Grade in TBM Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 98-109
[2] KUANG Liang1 SU Wei1 TAO Weiming1 TIAN Siming2 SHEN Yusheng3 LI Xu2 WANG Huiwu1.Study on the Impact Zoning and Fortification Range of Tunnel Structures Crossing Strike-slip Faults[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 45-54
[3] WEI Ronghua1,2 ZHANG Kangjian1,2 ZHANG Zhiqiang1,2.Optimization Study of Waterproof and Drainage Technology Parameters for Deep-buried Ditches in Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 183-192
[4] SONG Yuepeng1 FAN Xiaofeng2 LIANG Yu2,3,4 PENG Hongguo5 ZHANG Hanwei5.Deformation Monitoring and Analysis during the Excavation of Deep Circular Shafts in Intercity Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 219-226
[5] ZHOU Xiaojun.On Segmenting Design Method of Prefabricated Assembled Secondary Lining for High-speed Railway Tunnels Based on Cross-section Geometric Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(4): 232-243
[6] GAO Shuquan1,2,3 JIANG Liangwen1,2,3 MOU Yuancun1,2,3 LI Xing1,2,3 WANG Shudong1,2 ZHAO Siwei1,2,3.Advanced Geological Forecasting Techniques for Railway Tunnels in the Complex and Treacherous Mountainous Areas of Southwest China[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(2): 52-59
[7] WANG Mingnian1,2 DENG Tao3 YU Li1,2.Development and Prospects of Operation and Disaster Prevention Ventilation Technology in China′s Traffic Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(2): 152-166
[8] ZENG Hongrui1,2 SUN Wenhao3 HE Wei3 GUO Yalin1,2 GUO Chun1,2.Study on the Carbon Emission Prediction Model for Railway Tunnel Construction Based on Machine Learning[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(6): 29-39
[9] ZHU Xingyu LIU Zheng ZHANG Zhiqiang FENG Ying.Study on the Influence Law of Structural Design Parameters of the Railway Tunnel on Secondary Lining Cracks[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(5): 1-10
[10] CHEN Wei1,2 ZHANG Minghong2 ZHANG Ying2 LIN Ling2.Study on Engineering Geological Characteristics of Saline Rock in a Tunnel on China-Laos Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(5): 234-242
[11] DUO Shengjun.Study on Ventilation Technology for Long-distance TBM Construction in Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 222-228
[12] ZHAO Wanqiang1 LU Junfu2 TANG Yin1 ZHENG Changqing1.Study on Risk Level Classification Method and Control Measures for Railway Tunnel Floor Heave[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 178-187
[13] CHEN Xiwu1 QING Weichen1 LIU Guoqiang2.Construction Design for Super-large Section Tunnels in Fault Zone with High Geotress[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 204-212
[14] YUAN Chuanbao1 LU Jinlin1 TAO Yujing1 SONG Zhang1 LIU Guoqiang2.Study on Major Engineering Geological Problems of Yuelongmen Tunnel in Mountain Areas Under Complex Strong Earthquake Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 188-195
[15] YUAN Hongyun1,2 CHEN Liwei2 LIU Zhiqiang2.Method for Comprehensive Evaluation of Longitudinal Crack Defect of Lining of Single-track Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 208-216
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY