[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2021, Vol. 58 Issue (6) :163-172    DOI:
分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
豆砾石回填灌浆层缺陷的工程影响研究
(1黄河勘测规划设计研究院有限公司,郑州 450003;2 成都理工大学地质灾害防治与地质环境保护国家重点实验室,成都 610059)
Study on Engineering Influence of Defects in Pea Gravel Backfilling and Grouting Layer
(1 Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003; 2 State Key Laboratory of Geological Disaster Prevention and Geological Environment Protection, Chengdu University of Technology, Chengdu 610059)
Download: PDF (6226KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 豆砾石回填灌浆层是护盾式TBM施工隧洞衬砌体系的重要组成部分,研究豆砾石回填灌浆层中不同类型的施工缺陷对工程带来的影响具有理论价值和工程应用价值。文章以一双护盾TBM施工的引水隧洞为工程依托,归纳总结了豆砾石回填灌浆层中常见的缺陷类型及其分布规律;针对不同缺陷类型在不同工程条件下对管片应力及位移产生的影响,进行了系统的模拟分析。结果表明:常见的缺陷类型主要包括空洞、灌浆不密实、纯水泥以及灌浆体岩粉含量过高;空洞缺陷的影响最大,过程中应尽量做到满填满灌;管片竖向位移对施工缺陷比较敏感,有压隧洞中受内水压力作用,管片水平向和竖向位移差异减小;Ⅱ类围岩条件下各种缺陷的影响均较小,除空洞缺陷需要尽量避免外,其余缺陷的影响可忽略;Ⅳ类围岩对管片位移及受力起控制作用,同时会放大缺陷的影响效应,需要采取应对措施;内水压力与地质条件综合作用进一步放大了施工缺陷的影响,Ⅳ类围岩下管片的位移约为相应的Ⅱ类围岩条件下量值的2~3倍,其中空洞缺陷的影响效应尤为凸显。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
张金良 1 黄秋香 2 汪雪英 1 胡 超 2 张少轩 2
关键词:   
Abstract: The pea gravel backfilling and grouting layer is an important part of the shield TBM tunnel lining system, and it is of great theoretical and practical significance in studying the impact of different defects in the pea gravel backfilling and grouting layer on construction works. In this paper, common defect types and its distribution law in the pea gravel backfilling and grouting layer are summarized on the basis of a diversion tunnel constructed by the double shield TBM. Then, the effects of different defect types on segment stress and displacement under different engineering conditions are systematically simulated and analyzed. The results show that common defect types mainly include cavity, non-dense grouting, plain cement and high rock powder content in cemented grouts; among others,cavity has the greatest impact, and the fully filling should be performed as much as possible; the vertical displacement of segments is sensitive to construction defects, the difference between horizontal and vertical displacements of segments might decrease under the action of internal water pressure in the pressurized tunnel; under the condition of Class Ⅱ surrounding rock, the influence of various defects is small, while that of other defects might be ignored ex? cept that cavity should be avoided as far as possible; in the Class Ⅳ surrounding rock the displacement and stress of segments are governed by the geological conditions, which would amplify the effect of defects, so that countermeasures should be taken accordingly; interaction of the internal water pressure and geological conditions would further amplify the influence of construction defects, the displacement of segments in Class Ⅳ surrounding rock is about 2~ 3 times of that in the Class Ⅱ surrounding rock, with especially prominent influence effect of cavity defect.
KeywordsShield TBM,   Pea gravel backfilling and grouting layer,   Segment lining,   Construction defects,   Hydraulic tunnel,   Cavity,   Non-dense grouting     
作者简介: 作者简介:张金良(1963-),男,博士,正高级工程师,研究员,博士生导师,主要从事洪水泥沙管理、水利水电工程设计等工作,E-mail:jizhangy? rec@126.com. 通讯作者:黄秋香(1980-),女,博士,副教授,主要从事岩土工程方面的教学与研究工作,E-mail:qiuxiang.huang@foxmail.com.
引用本文:   
张金良 1 黄秋香 2 汪雪英 1 胡 超 2 张少轩 2 .豆砾石回填灌浆层缺陷的工程影响研究[J]  现代隧道技术, 2021,V58(6): 163-172
ZHANG Jinliang1 HUANG Qiuxiang2 WANG Xueying1 HU Chao2 ZHANG Shaoxuan2 .Study on Engineering Influence of Defects in Pea Gravel Backfilling and Grouting Layer[J]  MODERN TUNNELLING TECHNOLOGY, 2021,V58(6): 163-172
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2021/V58/I6/163
 
没有本文参考文献
[1] 冯冀蒙 1,2 蒋 辉 1,2 丁晓琦 1,2 虞龙平 1,2 张俊儒 1,2.并行双洞隧道穿越滑坡工程研究进展与挑战[J]. 现代隧道技术, 2021,58(6): 1-10
[2] 卢冠楠 1 王 鹏 1 杨 蕴 2 毛成君 3 吴咏敬 4 吴剑锋 3 董 平 3, 4 吴吉春 3.岩溶区隧道排水系统地下水渗流结晶堵塞机理及阻垢技术研究综述[J]. 现代隧道技术, 2021,58(6): 11-20
[3] 董建松.厦门海沧海底隧道穿越风化槽施工技术[J]. 现代隧道技术, 2021,58(6): 197-203
[4] 付 雷 马 鑫 邵 炜.冷水混入模式对藏南隧道高温热害预测的影响[J]. 现代隧道技术, 2021,58(6): 21-30
[5] 花晓鸣 罗晨曦 苟晓军 张海超.结合Landsat 8遥感影像的长大深埋隧道地表地热空间分布特征分析——以高黎贡山隧道为例[J]. 现代隧道技术, 2021,58(6): 31-37
[6] 王明年 1,2 崔 鹏 1,2 于 丽 1,2 卢旭东 3 胡萧越 1,2 夏鹏曦 1,2.基于台阶试验的相对最大摄氧量与人员疏散能力关系研究[J]. 现代隧道技术, 2021,58(6): 38-45
[7] 周晓军 1 郭 建 1 杨昌宇 2 卿伟宸 2 熊国兴 2 旷文涛 2 潘英东 1.钻爆法双线铁路隧道预制拼装二次衬砌分块方式研究[J]. 现代隧道技术, 2021,58(6): 46-58
[8] 何乐平 1 徐应东 1 胡启军 1 蔡其杰 2.基于博弈论-云模型的软岩隧道大变形风险评估[J]. 现代隧道技术, 2021,58(6): 85-94
[9] 郝俊锁.复杂地质特长深埋水工隧洞智能化施工关键技术研究[J]. 现代隧道技术, 2021,58(6): 188-196
[10] 魏 纲 1 郝 威 2 魏新江 1 王 霄 2 章书远 2.竖向顶管施工全过程数值模拟研究[J]. 现代隧道技术, 2021,58(6): 59-67
[11] 肖尊群 1,2,3 曹童童 1 许彩云 1 杨 凯 2 董琼英 1 姜亦男 1 耿星月 1 舒志鹏 1.基于叠加原理的大尺寸矩形截面竖向曲线顶管顶进力数值估算方法[J]. 现代隧道技术, 2021,58(6): 68-76
[12] 徐公允 1 徐汪豪 1,2 姚志刚 1 方 勇 1 刘四进 3.基于三维RBD-DEM耦合方法的贯入角度对滚刀冲击影响分析[J]. 现代隧道技术, 2021,58(6): 77-84
[13] 来弘鹏 1 王 斌 1 刘禹阳 2.考虑地层开裂的浅埋黄土隧道围岩压力计算方法[J]. 现代隧道技术, 2021,58(6): 95-101
[14] 张冬梅 1,2 陈淙岑 2.管片钢筋和螺栓锈蚀条件下盾构隧道结构时变可靠度分析[J]. 现代隧道技术, 2021,58(6): 111-120
[15] 黄迪文 霍宏斌 陈 东.基于优化神经网络的圆形隧道受剪变形分析[J]. 现代隧道技术, 2021,58(6): 102-110
Copyright 2010 by 现代隧道技术