[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2022, Vol. 59 Issue (5) :170-178    DOI:
试验与监测 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
基于目标总推力矢量的盾构推进油缸压力闭环控制技术
(1.上海隧道工程有限公司,上海 200232; 2.上海城建隧道装备有限公司,上海 200137)
Closed-loop Control Technology of Shield Thrust Hydro-cylinder Pressure Based on Target Total Thrust Vector
(1. Shanghai Tunnel Engineering Co. Ltd., Shanghai 200232; 2. Shanghai Urban Construction Tunnel Equipment Co. Ltd.,Shanghai 200137)
Download: PDF (5538KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 以盾构矢量推进为目的,解决因顶力缺失造成盾构失稳、姿态偏离的问题,提出一种以推进系统全油缸全控为前提、以目标总推力矢量为基础的推进油缸压力闭环控制技术,分别给出了一种全油缸自由分区推进和缺失顶力自补偿推进的推力矢量控制计算方法,并通过构建大型模型试验平台对该技术可行性进行验证。试验结果表明:两种推进试验过程中,推进油缸目标压力变更的瞬间实际压力受比例减压阀性能影响存在响应延迟的现象,但整体上实测压力控制在目标值±4%范围,推进系统总推力矢量整体维持稳定;全油缸自由分区推进过程中盾构推进速度和盾构姿态控制效果较佳,部分油缸缩回后出现因推进泵流量输出固定导致的盾构机加速现象,且由于油缸压力响应延迟以及流量供给不均匀造成盾构姿态突变的情况,恢复到全油缸推进状态后盾构推进速度和姿态偏差均恢复到初始值状态;缺失顶力自补偿试验全过程中,试验机推进速度控制在初值的±3 mm/min范围,盾构姿态偏差整体控制在初值的-6~+4 mm范围。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
朱叶艇 1
2 龚 卫 1
2 秦 元 1
2 袁向华 1
2 吴文斐 1
2 章博雅 1
2 朱雁飞 1
关键词盾构机   推进系统   总推力   闭环   模型试验     
Abstract: To solve the problems of shield machine instability and excessive shield posture deviations caused by the lack of thrust force, a closed-loop control technology of the thrust cylinder pressures based on the target total thrust vector was proposed. Two thrust force vector calculation methods regarding to the shield driving with free partition technology of full-cylinders and the shield driving with self-compensation of missing thrust force were established,and the feasibility of both two methods were verified by constructing a large-scale model test platform, the testing results show that although affected by the performance of the proportional reducing valves during the two driving tests,oil pressure delays were found at the moment when the target pressures of the thrust cylinders changed, the measured pressures were controlled within ± 4% of the target values generally, and the total thrust force vector was maintained stable; the driving speed and shield postures were well controlled in the driving test with free partition of fullcylinders, while the acceleration phenomenon of the shield machine was discovered induced by the fixed flow output of the propulsion pump once part of hydro-cylinders were retracted, and sudden changes of the shield postures were caused at the same time by the response delay of the oil pressures and the uneven flow supply from the propulsion pump, both the driving speed and shield postures returned to the initial values after entering the full-cylinder thrust state; in the whole process of the driving test with self-compensation of missing thrust force, the shield driving speed and the shield posture deviations were controlled within ± 3 mm/min and -6 ~ +4 mm related to their respective ini? tial values
KeywordsShield machine,   Thrust system,   Total thrust force,   Closed-loop,   Model test     
作者简介: 朱叶艇(1987-),男,博士,高级工程师,主要从事盾构隧道施工技术与盾构重大装备研发工作,E-mail:zhuyeting@stecmc.com.
引用本文:   
朱叶艇 1, 2 龚 卫 1, 2 秦 元 1等 .基于目标总推力矢量的盾构推进油缸压力闭环控制技术[J]  现代隧道技术, 2022,V59(5): 170-178
ZHU Yeting1, 2 GONG Wei1, 2 QIN Yuan1 etc .Closed-loop Control Technology of Shield Thrust Hydro-cylinder Pressure Based on Target Total Thrust Vector[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(5): 170-178
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2022/V59/I5/170
 
没有本文参考文献
[1] 郭永军1 李 超2 郑建国3 于永堂4 朱才辉5.地面堆载对西安黄土地层中既有盾构管片影响研究[J]. 现代隧道技术, 2025,62(4): 61-72
[2] 王敬勇1,2 王 平2 杨 锦2 吉 锋3.基于物理模型试验的碳质千枚岩隧道支护结构优化研究[J]. 现代隧道技术, 2025,62(3): 160-169
[3] 郭 盈 彭文庆 陈世强 张 琼 王佳伟.隧道行车道通风模型试验当量长度计算方法与验证[J]. 现代隧道技术, 2025,62(2): 230-240
[4] 陶伟明1,2 朱星宇1,3 张志强1,3 于 航1,3 范 磊2.隧道管道型岩溶突水突泥灾变演化模型试验研究[J]. 现代隧道技术, 2025,62(1): 221-230
[5] 张昕阳1,2 申玉生1,2 常铭宇1,2 王浩鱇1,2 潘笑海1,2 王岩岩1,2.基于GA-BP神经网络的隧道围岩相似材料配合比设计[J]. 现代隧道技术, 2024,61(6): 82-91
[6] 匡 亮1 粟 威1 陶伟明1 田四明2 申玉生3 黎 旭2 汪辉武1.跨走滑断层隧道结构影响分区及设防范围研究[J]. 现代隧道技术, 2024,61(6): 45-54
[7] 杨文东1 吴 洋1 王智德1 武海港1,2 李 根1.隧道开挖对既有桩基影响分区的试验研究[J]. 现代隧道技术, 2024,61(6): 200-208
[8] 杨春山1 徐世杨2 魏立新1 陈俊生3.垂直顶升作用下盾构隧道力学特性模型试验研究[J]. 现代隧道技术, 2024,61(5): 210-218
[9] 潘笑海1 申玉生1 王浩鱇1 王岩岩1 张昕阳1 张 熙1 左雷彬2.多破裂面走滑断层错动下隧道结构响应规律研究[J]. 现代隧道技术, 2024,61(4): 210-220
[10] 陈泽恩1,2 陈小峰1,2,3 孔祥苗4 张 欣5 张永强2 刁岳峰1 吴 珂1,2,3.分叉隧道合流段流动特征及局部损失特性研究[J]. 现代隧道技术, 2024,61(3): 53-60
[11] 刘泓志1 徐善坤1 郭易东2,3 方应冉2,3 李兴高2,3.泥浆流变模型对泥水盾构排浆管道压力损失特性的影响分析[J]. 现代隧道技术, 2024,61(1): 182-189
[12] 曾 毅1 高 越2,3 吴沛霖2,3 张小龙1 付艳斌2,3.既有盾构隧道抬升模型试验研究[J]. 现代隧道技术, 2024,61(1): 200-207
[13] 熊英健1 刘四进2 马浴阳2 方 勇1 何 川1.基于PSO算法的盾构掘进参数寻优方法及应用[J]. 现代隧道技术, 2023,60(6): 165-174
[14] 马亚丽娜1, 2 陈雅琪1, 2 刘继国1, 2 崔 臻3 周光新4.跨走滑断层铰接式隧洞衬砌错断破坏机制研究[J]. 现代隧道技术, 2023,60(5): 136-147
[15] 郑坤隆 1,2 王剑云 2 令狐延 1 杨晓华 3 丁亚特 1 陈 锟 1 王志丰 3.速凝渗透结晶型浆液用于隧道渗漏的防治试验研究[J]. 现代隧道技术, 2023,60(4): 254-263
Copyright 2010 by 现代隧道技术