[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2022, Vol. 59 Issue (5) :170-178    DOI:
试验与监测 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
基于目标总推力矢量的盾构推进油缸压力闭环控制技术
(1.上海隧道工程有限公司,上海 200232; 2.上海城建隧道装备有限公司,上海 200137)
Closed-loop Control Technology of Shield Thrust Hydro-cylinder Pressure Based on Target Total Thrust Vector
(1. Shanghai Tunnel Engineering Co. Ltd., Shanghai 200232; 2. Shanghai Urban Construction Tunnel Equipment Co. Ltd.,Shanghai 200137)
Download: PDF (5538KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 以盾构矢量推进为目的,解决因顶力缺失造成盾构失稳、姿态偏离的问题,提出一种以推进系统全油缸全控为前提、以目标总推力矢量为基础的推进油缸压力闭环控制技术,分别给出了一种全油缸自由分区推进和缺失顶力自补偿推进的推力矢量控制计算方法,并通过构建大型模型试验平台对该技术可行性进行验证。试验结果表明:两种推进试验过程中,推进油缸目标压力变更的瞬间实际压力受比例减压阀性能影响存在响应延迟的现象,但整体上实测压力控制在目标值±4%范围,推进系统总推力矢量整体维持稳定;全油缸自由分区推进过程中盾构推进速度和盾构姿态控制效果较佳,部分油缸缩回后出现因推进泵流量输出固定导致的盾构机加速现象,且由于油缸压力响应延迟以及流量供给不均匀造成盾构姿态突变的情况,恢复到全油缸推进状态后盾构推进速度和姿态偏差均恢复到初始值状态;缺失顶力自补偿试验全过程中,试验机推进速度控制在初值的±3 mm/min范围,盾构姿态偏差整体控制在初值的-6~+4 mm范围。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
朱叶艇 1
2 龚 卫 1
2 秦 元 1
2 袁向华 1
2 吴文斐 1
2 章博雅 1
2 朱雁飞 1
关键词盾构机   推进系统   总推力   闭环   模型试验     
Abstract: To solve the problems of shield machine instability and excessive shield posture deviations caused by the lack of thrust force, a closed-loop control technology of the thrust cylinder pressures based on the target total thrust vector was proposed. Two thrust force vector calculation methods regarding to the shield driving with free partition technology of full-cylinders and the shield driving with self-compensation of missing thrust force were established,and the feasibility of both two methods were verified by constructing a large-scale model test platform, the testing results show that although affected by the performance of the proportional reducing valves during the two driving tests,oil pressure delays were found at the moment when the target pressures of the thrust cylinders changed, the measured pressures were controlled within ± 4% of the target values generally, and the total thrust force vector was maintained stable; the driving speed and shield postures were well controlled in the driving test with free partition of fullcylinders, while the acceleration phenomenon of the shield machine was discovered induced by the fixed flow output of the propulsion pump once part of hydro-cylinders were retracted, and sudden changes of the shield postures were caused at the same time by the response delay of the oil pressures and the uneven flow supply from the propulsion pump, both the driving speed and shield postures returned to the initial values after entering the full-cylinder thrust state; in the whole process of the driving test with self-compensation of missing thrust force, the shield driving speed and the shield posture deviations were controlled within ± 3 mm/min and -6 ~ +4 mm related to their respective ini? tial values
KeywordsShield machine,   Thrust system,   Total thrust force,   Closed-loop,   Model test     
作者简介: 朱叶艇(1987-),男,博士,高级工程师,主要从事盾构隧道施工技术与盾构重大装备研发工作,E-mail:zhuyeting@stecmc.com.
引用本文:   
朱叶艇 1, 2 龚 卫 1, 2 秦 元 1等 .基于目标总推力矢量的盾构推进油缸压力闭环控制技术[J]  现代隧道技术, 2022,V59(5): 170-178
ZHU Yeting1, 2 GONG Wei1, 2 QIN Yuan1 etc .Closed-loop Control Technology of Shield Thrust Hydro-cylinder Pressure Based on Target Total Thrust Vector[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(5): 170-178
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2022/V59/I5/170
 
没有本文参考文献
[1] 袁向华 1,2 朱雁飞 1 朱叶艇 1,2.基于最大压力冗余原则的盾构推拼同步技术试验验证[J]. 现代隧道技术, 2022,59(6): 106-113
[2] 陈仁东 1 陆 平 2 孙 烨 1 刘明高 1 庞 康 1.超大直径盾构隧道横通道离心模型试验研究[J]. 现代隧道技术, 2022,59(6): 114-124
[3] 刘学增 1 谷文川 1 杨芝璐 2,3 郭乔堃 4 何国华 5 冯 劲 6.侧向荷载作用下损伤隧道粘钢加固效果试验研究[J]. 现代隧道技术, 2022,59(4): 187-195
[4] 梁荣柱 1,2 韦 实 1 王新新 3 孙廉威 3 吴小建 3.内支撑式和悬臂式锁口钢管桩基坑围护结构变形对比试验分析[J]. 现代隧道技术, 2022,59(3): 172-182
[5] 黄世光 1 杨艳娜 2 范全忠 2 黄靖宇 2 余 磊 2.隧道堵水限排设计参数变化规律试验研究[J]. 现代隧道技术, 2022,59(3): 201-210
[6] 王 飞.深厚砂卵石地层超深竖井施工降水模型试验研究[J]. 现代隧道技术, 2022,59(1): 176-182
[7] 陈志敏 1,2 李江鹏 1 薛智文 3.极高地应力软岩隧道丢失变形与控制模型试验研究[J]. 现代隧道技术, 2022,59(1): 164-175
[8] 魏 纲 1 郝 威 2 魏新江 1 王 霄 2 章书远 2.竖向顶管施工全过程数值模拟研究[J]. 现代隧道技术, 2021,58(6): 59-67
[9] 宋 洋 1 王韦颐 2 杜春生 3.富水圆砾与泥岩复合地层泥水盾构超近接下穿既有地铁隧道掘进参数优化研究[J]. 现代隧道技术, 2021,58(5): 85-95
[10] 郭 瑞 1,2,3 郑 波 2,3 方 林 1,4 吴 剑 2,3.寒区隧道纵向温度场分布特征的模型试验研究[J]. 现代隧道技术, 2021,58(5): 129-139
[11] 李福海 1 李 瑞 1 姜怡林 1 高 浩 1 王奕彬 1 王佩勋 2.隧道二次衬砌脱空带模注浆对衬砌结构受力影响的试验研究[J]. 现代隧道技术, 2021,58(5): 147-158
[12] 魏 纲 1,2 赵得乾麟 1 黄 睿 1.盾构施工对邻近隧道影响的模型试验研究综述[J]. 现代隧道技术, 2021,58(5): 1-8
[13] 李福海 1 李 瑞 1 吴昊南 1 高 浩 1 汪 波 1 张桂斌 2 陈思银 3.高地温作用下全长粘结式锚杆的荷载传递分析[J]. 现代隧道技术, 2021,58(4): 157-162
[14] 贾艳领 1,2,3 周绍文 2,3 王 刚 2,3 周维政 2,3 杨昆光 2,3.既有隧道扩建为双连拱隧道中隔墙受力特征研究[J]. 现代隧道技术, 2021,58(3): 130-138
[15] 龚秋明 1 王庆欢 1 王杜娟 2 邱海峰 3 吴 帆 1.盾构隧道施工刀盘状态实时监测系统研制[J]. 现代隧道技术, 2021,58(2): 41-50
Copyright 2010 by 现代隧道技术