[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2022, Vol. 59 Issue (4) :187-195    DOI:
试验与监测 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
侧向荷载作用下损伤隧道粘钢加固效果试验研究
 
(1.同济大学土木工程学院,上海 200092;2.上海同岩土木工程科技股份有限公司,上海 200092;3.上海地下基础设施安全检测与养护装备工程技术研究中心,上海 200092;4.上海同济工程咨询有限公司,上海 200092;5.贵州高速公路集团有限公司,贵阳 550001;6.浙江省交通规划设计研究院有限公司,杭州 310030)
Test Study on the Reinforcement Effect of Bonding Steel to Damaged Tunnels under the Lateral Loads
 
(1. College of Civil Engineering, Tongji University, Shanghai 200092; 2. Shanghai Tongyan Civil Engineering Science & Technology Co., Ltd., Shanghai 200092; 3. Shanghai Research Center for Underground Infrastructure Safety Inspection and Maintenance Equipment Engineering Technology, Shanghai 200092; 4. Shanghai Tongji Engineering Consulting Co., Ltd., Shanghai 200092;5. Guizhou Expressway Group Co., Ltd., Guiyang 550001; 6. Zhejiang Transportation Planning and Design Institute Co., Ltd,Hangzhou 310030)
Download: PDF (4116KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
文章导读  
摘要 为了研究侧向荷载作用下损伤隧道衬砌粘钢加固效果,采用1∶10的模型试验,研究了侧向荷载作用下隧道衬砌结构和不同损伤状态粘钢加固结构的变形、破坏模式。试验结果表明:侧向荷载作用下,隧道衬砌结构破坏模式为脆性破坏,破坏发展过程为拱腰开裂—拱肩脆性剪坏—拱腰延性受弯破坏;衬砌结构拱顶和左右侧边墙—拱腰处裂损集中发育,截面刚度快速衰减,是结构的脆弱点和危险点;粘钢加固后,结构拱腰处结合面剪应力引起的粘钢剥离是加固结构失稳的主要因素;结构剩余承载力占比为30%时粘钢加固结构承载力未提高,在剩余承载力占比为48%时粘钢加固结构承载力提升4.1%,在剩余承载力占比为60%时加固结构承载力提升10.2%。因此,侧向压力作用下隧道损伤衬砌采用粘钢加固后结构的承载力提升皆不明显,加固效果有限,侧向荷载引起的衬砌损伤不宜采用粘钢加固。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
刘学增 1 谷文川 1 杨芝璐 2
3 郭乔堃 4 何国华 5 冯 劲 6
关键词公路隧道   损伤衬砌   粘钢加固   模型试验   侧向荷载   加固时机   加固效果     
Abstract: To research the reinforcement effect of bonding steel to the damaged linings of tunnels under lateral loads, a 1∶10 model test was conducted, and the modes of deformation and damage of the tunnel lining structure under lateral loads and the steel-bonded structure in different states of damage were researched. The test results showed that under lateral loads, the damage mode of the tunnel lining structure was brittle failure, and the damage development process was as follows: arch waist cracking — brittle shear failure of arch shoulder — damage to arch waist ductility and bending; damage was concentrated on the crown of the lining structure and the side wall-waist on the left and right sides, and the section stiffness was rapidly attenuated, which was the vulnerability and dangerous point of the structure; after steel was bonded for reinforcement, the stripping of bonded steel caused by the shear stress of the bonding surface at the structure waist was the major factor causing the instability of the reinforced structure; when the remaining bearing capacity proprtion was 30%, the bearing capacity of the structure reinforced by bonded steel was not increased; when the remaining bearing capacity proprtion was 48%, the bearing capacity of the reinforced structure was increased by 4.1%; when the remaining bearing capacity proprtion was 60%, the bearing capacity of the reinforced structure was increased by 10.2%. Consequently, after the damaged tunnel lining was rein? forced with bonded steel under the lateral pressure, the bearing capacity was not significantly improved and the reinforcement effect was limited, and the lining damage caused by lateral loads should not be reinforced by bonding steel.
KeywordsHighway tunnel,   Damaged lining,   Bonding steel for reinforcement,   Model test,   Lateral load,   Time of rein? forcement,   Reinforcement effect     
基金资助:国家自然科学基金面上资助项目(51878497);贵州省科学技术厅重大科技专项(黔科合重大专项字[2018]3011);浙江省交通运输厅 科技项目(2018011).
作者简介: 刘学增(1971-),男,博士,正高级工程师,主要从事隧道建设安全风险评估、新型监测检测技术、结构健康诊断及加固设计理论等关 键技术研究工作,E-mail: xuezengL@263.net.
引用本文:   
刘学增 1 谷文川 1 杨芝璐 2, 3 郭乔堃 4 何国华 5 冯 劲 6 .侧向荷载作用下损伤隧道粘钢加固效果试验研究[J]  现代隧道技术, 2022,V59(4): 187-195
LIU Xuezeng1 GU Wenchuan1 YANG Zhilu2, 3 GUO Qiaokun4 HE Guohua5 FENG Jin6 .Test Study on the Reinforcement Effect of Bonding Steel to Damaged Tunnels under the Lateral Loads[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(4): 187-195
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2022/V59/I4/187
 
没有本文参考文献
[1] 郭永军1 李 超2 郑建国3 于永堂4 朱才辉5.地面堆载对西安黄土地层中既有盾构管片影响研究[J]. 现代隧道技术, 2025,62(4): 61-72
[2] 苏开春1 付 锐2,3 曾弘锐2,3 冷希乔4 郭 春2,3.基于DBO-A-LSTM的公路隧道短时多步交通量预测[J]. 现代隧道技术, 2025,62(4): 111-121
[3] 钟武霖1 韩兴博1 叶 飞1 王 涵1 曹校勇2 奚魏征2.隧道竖井钢波纹板支护风阻及优化设计研究[J]. 现代隧道技术, 2025,62(4): 197-207
[4] 李 强1 韩兴博2 谢 举1 李 超3 李 醒3 马爱华1 毕洁夫3 叶 飞2.光储并网型微电网隧道供能策略与实践——以五丁关隧道光伏电站工程为例[J]. 现代隧道技术, 2025,62(3): 60-66
[5] 王敬勇1,2 王 平2 杨 锦2 吉 锋3.基于物理模型试验的碳质千枚岩隧道支护结构优化研究[J]. 现代隧道技术, 2025,62(3): 160-169
[6] 唐 协1,2 林国进1,2 张 航2.公路隧道机械钻爆法施工适应对策[J]. 现代隧道技术, 2025,62(3): 217-228
[7] 刘尚国1 慈乃全1 刘如飞1 程 坤2 王 飞1 马新江3.基于车载激光点云的公路隧道拱顶变形监测方法[J]. 现代隧道技术, 2025,62(3): 209-216
[8] 陈 相1,2 林 志1,2 冯万林1,2 杨红运1,2.公路隧道素混凝土衬砌裂缝扩展特征及力学行为试验研究[J]. 现代隧道技术, 2025,62(2): 212-220
[9] 郭 盈 彭文庆 陈世强 张 琼 王佳伟.隧道行车道通风模型试验当量长度计算方法与验证[J]. 现代隧道技术, 2025,62(2): 230-240
[10] 谭因军1,2 王柯力1,2 张 恒1,2 张志强1,2.10 km级特长公路隧道自然风对火灾烟气蔓延的影响[J]. 现代隧道技术, 2025,62(1): 103-113
[11] 陶伟明1,2 朱星宇1,3 张志强1,3 于 航1,3 范 磊2.隧道管道型岩溶突水突泥灾变演化模型试验研究[J]. 现代隧道技术, 2025,62(1): 221-230
[12] 张昕阳1,2 申玉生1,2 常铭宇1,2 王浩鱇1,2 潘笑海1,2 王岩岩1,2.基于GA-BP神经网络的隧道围岩相似材料配合比设计[J]. 现代隧道技术, 2024,61(6): 82-91
[13] 匡 亮1 粟 威1 陶伟明1 田四明2 申玉生3 黎 旭2 汪辉武1.跨走滑断层隧道结构影响分区及设防范围研究[J]. 现代隧道技术, 2024,61(6): 45-54
[14] 杨文东1 吴 洋1 王智德1 武海港1,2 李 根1.隧道开挖对既有桩基影响分区的试验研究[J]. 现代隧道技术, 2024,61(6): 200-208
[15] 陈建勋1 王贺起1, 2 贾海洋1 刘伟伟1 罗彦斌1 赵志强1 黄登侠2.天山胜利隧道1-2号竖井自然通风测试与分析[J]. 现代隧道技术, 2024,61(6): 219-23
Copyright 2010 by 现代隧道技术