[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (2) :90-104    DOI:
修建技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
复合地层盾构隧道修建技术创新与展望
(1. 广州地铁集团有限公司,广州 510000;2. 广州轨道交通盾构技术研究所,广州 510000; 3.中国岩石力学与工程学会工程实例专委会,广州 510000;4.广州地铁建设管理有限公司,广州 510000)
Innovation and Prospects of Shield Tunnelling Technology in Mixed Ground
(1. Guangzhou Metro Group Co., Ltd., Guangzhou 510000; 2. Guangzhou Metro Shield Technology Research Institute,Guangzhou 510000; 3. Engineering Case Committee of Chinese Society for Rock Mechanics & Engineering, Guangzhou 510000;4. Guangzhou Metro Construction Management Co., Ltd., Guangzhou 510000)
Download: PDF (7198KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 自上世纪90年代初,广州地铁率先引进复合式盾构机,尝试在素有“地质博物馆”之称的广州复合地层中施工地铁隧道,历经十余年(1994—2005)全程实践和系统分析,提出和定义了一系列新概念、新观点、新方法,高质量建成地铁100多公里,创立了复合地层盾构施工技术理论体系,拓宽了盾构工法的地质适应性,为盾构工法大规模推广应用、设备国产化和产业化、人才培养奠定了坚实的理论和经验基础。在第二个十年(2006—2015),复合地层盾构施工技术理论进一步完善和发展,针对“泥饼、滞排、喷涌”等复合地层盾构施工的基本风险源或因素,创新研发并应用“衡盾泥”开舱技术,首创“隐蔽岩体环保爆破新技术”,发展了“辅助气压掘进技术”,以及推动双模式、常压刀盘等盾构机新技术的应用,建成一大批长距离、大直径、深埋、复杂地质隧道,中国逐步成为盾构大国。近十年来(2016至今),多模式融合的“三模掘进机”研制和成功应用,“巨厚岩层”覆盖下泥水盾构施工沉陷原因及对策研究等一批行业前沿成果正式发布,丰富了盾构施工技术,助力我国向世界盾构强国迈进。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
竺维彬1
2
3 米晋生2
3 王 晖2
3
4 钟长平1
2
3
关键词复合地层   盾构隧道   修建技术   创新与展望     
Abstract: Since the early 1990s, Guangzhou Metro has pioneered the introduction of combined shield machines to construct metro tunnels in the geologically complex strata of Guangzhou (known as the "Geological Museum"). Through the first decade of comprehensive practice and systematic analysis from 1994 to 2005, a series of new concepts, viewpoints, and methods were proposed and defined, and over 100 km of high-quality metro tunnels were constructed, establishing a theoretical system for shield tunnelling technology in mixed ground. It has expanded the geological adaptability of the shield tunnelling method and laid a solid theoretical and practical foundation for its large-scale promotion, equipment localization, industrialization, and talent development. In the second decade(2006-2015), the theoretical system for shield tunnelling in mixed ground was further refined and developed. To resolve the basic risk sources or factors of shield tunnelling in mixed ground such as "mud cake, hindered mucking,and spewing", innovations such as the "Hengdun Mud" chamber opening technology, the pioneering "Hidden Rock Body Environmental Blasting Technology," and the "Auxiliary Air Pressure Tunnelling Technology" were developed and applied. Additionally, the application of new technologies such as dual-mode and air pressure cutter heads in shield machines led to the construction of a large number of long-distance, large-diameter, deep-buried, and complex geological tunnels, gradually establishing China as a major player in shield Tunnelling. In the recent decade(2016-), several advanced achievements have been officially released, such as the development and successful application of the multi-mode integrated "Tri-mode Tunnelling Machine", and research on the settlement causes and countermeasures in slurry shield construction in "extremely thick rock layer". These advancements enrich the shield tunnelling technology and help China move towards becoming a world leader in shield tunnelling.
KeywordsMixed ground,   Shield tunnel,   Tunneling technology,   Innovation and prospects     
作者简介: 竺维彬(1962-),男,硕士,正高级工程师,主要从事地铁建设管理与盾构技术研究工作,E-mail:dfsz2023@163.com.
引用本文:   
竺维彬1, 2, 3 米晋生2等 .复合地层盾构隧道修建技术创新与展望[J]  现代隧道技术, 2024,V61(2): 90-104
ZHU Weibin1, 2, 3 MI Jinsheng2 etc .Innovation and Prospects of Shield Tunnelling Technology in Mixed Ground[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(2): 90-104
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I2/90
 
没有本文参考文献
[1] 陈 健1,2,3,4 袁大军5 苏秀婷1,2 王志奎1,2,3.超大直径水下盾构隧道施工技术进展与展望[J]. 现代隧道技术, 2024,61(2): 124-138
[2] 包小华1,2,3 袁槐岑1,2,3 陈湘生1,2,3 沈 俊1,2,3 郭建波4 沈 翔1,2,3 崔宏志1,2,3.水下盾构隧道建造与运维技术研究现状与展望[J]. 现代隧道技术, 2024,61(1): 16-35
[3] 张 庆1 甄文战1 封 坤2.大直径盾构隧道下穿既有高速公路桥涵影响分析[J]. 现代隧道技术, 2024,61(1): 137-145
[4] 郝鹏飞.预制整体式弧形件施工质量控制指标研究[J]. 现代隧道技术, 2024,61(1): 245-251
[5] 肖明清1, 3 封 坤2 王少锋1, 3 杨 昊2 郭文琦2.内部结构施作方式对公轨合建盾构隧道内爆炸动力响应的影响研究[J]. 现代隧道技术, 2024,61(1): 107-116
[6] 郑镇跡1 黄书华2 陈湘生1 张 良2 刘皓铭1 盛 健2 苏 栋1.超大直径盾构主隧道机械法联络通道特殊衬砌管片受力特性分析[J]. 现代隧道技术, 2024,61(1): 117-124
[7] 石钰锋1,2 蔡家城1 张 涛3 张晗秋4 李君贤1 顾大均5.冻结法地铁联络通道施工对邻近盾构隧道管片影响的测试分析[J]. 现代隧道技术, 2024,61(1): 190-199
[8] 曾 毅1 高 越2,3 吴沛霖2,3 张小龙1 付艳斌2,3.既有盾构隧道抬升模型试验研究[J]. 现代隧道技术, 2024,61(1): 200-207
[9] 王德福.盾构滚刀切削桩基相互作用机理及关键参数分析研究——以海珠湾盾构隧道为例[J]. 现代隧道技术, 2024,61(1): 216-228
[10] 郇昊霖1 李培楠2 刘 俊1 宋兴宝3 秦 元3 寇晓勇3 翟一欣3.大直径盾构隧道内部装配式预制结构安装路径优化及应用[J]. 现代隧道技术, 2024,61(1): 236-244
[11] 艾 青1 李一轩1 朱俊易2.越江盾构隧道全寿命期碳排放特征与减排途径研究[J]. 现代隧道技术, 2023,60(6): 11-19
[12] 王承震1 丁万涛2,3 于文端1 王志成1 孙腾云1 王中荣2.越海泥水盾构隧道泥浆流变特征试验研究[J]. 现代隧道技术, 2023,60(6): 237-245
[13] 杨 钊1,2 高如超1,2 姬付全1,2 陈培帅1,2 李明鹏3.基于SegFormer模型的盾构隧道管片间缝高精度测量[J]. 现代隧道技术, 2023,60(6): 175-182
[14] 肖明清1 钟元元2 陈 鹏3 王 峻4 戚兆臣5 张卫斌6.盾构隧道管片接缝密封垫气密性提升试验研究[J]. 现代隧道技术, 2023,60(6): 262-268
[15] 薛光桥1,2 肖明清1,2 封 坤3 王少锋1,2 薛皓匀3 郭文琦3.特大直径双层公路盾构隧道管片-内部结构复合体系横向抗震性能研究[J]. 现代隧道技术, 2023,60(5): 67-77
Copyright 2010 by 现代隧道技术