[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (5) :210-218    DOI:
试验与监测 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
垂直顶升作用下盾构隧道力学特性模型试验研究
(1. 广州市市政工程设计研究总院有限公司,广州 510060;2.广州地铁设计研究院股份有限公司,广州 510010;3.华南理工大学 亚热带建筑科学国家重点实验室,广州 510640)
Experimental Study on the Mechanical Characteristics of Shield Tunnels under Vertical Jacking
(1. Guangzhou Municipal Engineering Design & Research Institute CO.,Ltd, Guangzhou 510060; 2. Guangzhou Metro Design & Research Institute Co., Ltd. Guangzhou 510010; 3. State Key Laboratory of Subtropical Building Science, South China University of Technology,Guangzhou 510640)
Download: PDF (4596KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 垂直顶升法施工中,顶升反力作用于盾构隧道底部产生的影响是关乎土层结构安全、稳定的关键问题。为了探究盾构内垂直顶升施工对隧道力学特性的影响,依托典型工程,通过研制试验装置开展垂直顶升模型试验,揭示顶升过程扩散块反力的发展规律,探索顶升阶段盾构隧道衬砌结构与接头受力变形特性,并与理论计算进行对比分析。研究结果表明:顶升反力分布呈现出典型的非线性特征,主要经历土层破坏前的显增段、土层破坏后的显降段以及后期的渐降稳定段。管片收敛变形经历显著增加→快速减小→缓慢下降→趋于稳定4个阶段,影响范围为开口环与相邻两环,顶升过程变形控制应结合位移特征重点考虑竖向加固。顶升阶段隧道纵向弯曲变形,最大张开量出现在开口环间,且因纵向荷载突变错动,最大错台量出现在开口环与相邻环间。隧道管片环缝张开和错台沿纵向衰减很明显,位移主要由管片本体变形组成,接头变形贡献很小。顶升力作用下拱顶和底内侧分别受拉、受压,应力先增大后减小,拱腰上部表现为先压后拉,下部则受拉。顶升反力诱发管片应力扰动重分布,主要影响开口环以及相邻环,管片应力水平较低,结构未出现拉压损伤。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
杨春山1 徐世杨2 魏立新1 陈俊生3
关键词盾构隧道   垂直顶升   顶升反力   力学特性   模型试验   理论分析     
Abstract: In vertical jacking construction, the effect of jacking reaction forces applied to the bottom of shield tunnels is a critical issue concerning the safety and stability of the surrounding soil structure. To explore the impact of vertical jacking construction on the mechanical behavior of shield tunnels, a model test was conducted using a test apparatus developed for a typical project. The test aimed to reveal the development pattern of the reaction force distribution during the jacking process and to study the mechanical and deformation characteristics of the tunnel lining and joints during different jacking stages, comparing them with theoretical calculations. The results indicate that the distribution of jacking reaction forces exhibits a typical nonlinear pattern, characterized by a significant increase before soil failure, a notable decrease after soil failure, and a gradual stabilization phase. The convergence deformation of tunnel segments undergoes four stages: a sharp increase, rapid decrease, slow decline, and eventual stabilization, affecting the opening ring and adjacent two rings. Deformation control during the jacking process should prioritize vertical reinforcement based on displacement characteristics. Longitudinal bending deformation occurs in the tunnel during the jacking stage, with the maximum gap observed between the opening rings. Due to sudden longitudinal load shifts, the largest misalignment occurs between the opening ring and adjacent rings. The segment ring joint opening and misalignment decrease significantly along the longitudinal axis, with displacement mainly resulting from segment body deformation and minimal joint deformation contribution. Under jacking forces, the tunnel crown and inner base are subject to tension and compression, respectively, with stress initially increasing and then decreasing. The upper part of the tunnel waist experiences initial compression followed by tension, while the lower part is under tension. The jacking reaction force induces a redistribution of segment stress disturbances, primarily affecting the opening ring and adjacent rings. The segment stress levels remain low, and no tensile or compressive damage is observed in the structure.
KeywordsShield tunnel,   Vertical jacking,   Jacking reaction force,   Mechanical characteristics,   Model test,   Theo? retical analysis     
基金资助:国家自然科学基金项目(51878192);广东省住房和城乡建设厅科技创新计划项目(2022-K4-094918);广东省普通高校特色创新项目(2023KTSCX261).
作者简介: 杨春山(1986-),男,博士,正高级工程师,主要从事隧道与地下工程设计研究工作,E-mail:soildoctor@163.com.
引用本文:   
杨春山1 徐世杨2 魏立新1 陈俊生3 .垂直顶升作用下盾构隧道力学特性模型试验研究[J]  现代隧道技术, 2024,V61(5): 210-218
YANG Chunshan1 XU Shiyang2 WEI Lixin1 CHEN Junsheng3 .Experimental Study on the Mechanical Characteristics of Shield Tunnels under Vertical Jacking[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(5): 210-218
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I5/210
 
没有本文参考文献
[1] 张小龙.桩基荷载作用下地铁盾构隧道结构力学响应分析[J]. 现代隧道技术, 2025,62(4): 82-89
[2] 郭永军1 李 超2 郑建国3 于永堂4 朱才辉5.地面堆载对西安黄土地层中既有盾构管片影响研究[J]. 现代隧道技术, 2025,62(4): 61-72
[3] 周弋力1 封 坤1 郭文琦1 张亮亮2 李春林3.超大直径盾构隧道管片纵缝抗弯力学行为与损伤过程研究[J]. 现代隧道技术, 2025,62(4): 163-173
[4] 易 丹1 薛皓匀2 杨绍毅2 喻 波1 封 坤2 林 刚1.盾构隧道管片结构螺栓失效对横向地震响应的影响分析[J]. 现代隧道技术, 2025,62(4): 174-181
[5] 贾永刚1 郝子晗1 鲁卫东1 吴 帆1 阳卫卫2.钢纤维混凝土管片不同接头型式力学性能研究[J]. 现代隧道技术, 2025,62(4): 182-196
[6] 谭鑫雨1 韦 猛1,2 兰灵申1 尚 强1 张海涛1.盾构刀盘结泥饼土体降黏附试验与机理研究[J]. 现代隧道技术, 2025,62(4): 219-229
[7] 刘朋飞1,2 曾德星2 王 霄3 杨 钊2 李 钰2.盾构泥饼分解剂作用效果评价试验及应用研究[J]. 现代隧道技术, 2025,62(4): 230-237
[8] 胡云进1,,2,3 朱铭伟1,2,3 郜会彩1,2,3 任智豪1,2,3.地下水渗流对能源盾构隧道换热性能的影响[J]. 现代隧道技术, 2025,62(3): 50-59
[9] 李瀚源1,2 冯 劲1 郭洪雨1 谢雄耀2 周红升1 孙 飞1.海底盾构隧道双层衬砌结构联合承载力学特性研究[J]. 现代隧道技术, 2025,62(3): 126-138
[10] 王敬勇1,2 王 平2 杨 锦2 吉 锋3.基于物理模型试验的碳质千枚岩隧道支护结构优化研究[J]. 现代隧道技术, 2025,62(3): 160-169
[11] 张昕阳1,2 申玉生1,2 常铭宇1,2 刘 童1,2 孙天赦3,4 胡 帅3,4.克泥效工法对泥岩地层盾构隧道地表变形控制规律研究[J]. 现代隧道技术, 2025,62(2): 283-290
[12] 于同生1,2 官林星3 闫治国1,2.地铁盾构隧道多灾害场景及结构多灾害响应研究综述[J]. 现代隧道技术, 2025,62(2): 16-26
[13] 朱叶艇1,2 朱雁飞1 王志华1,3 王帅峰4 王 浩1 马志刚1 龚 卫1,2 秦 元1.推力矢量智控盾构的理论创新、方法实现与工程验证[J]. 现代隧道技术, 2025,62(2): 71-78
[14] 肖明清1 封 坤2 薛光桥1 王运超2 鲁志鹏1 陈 龙2.软土地层盾构姿态偏移引起的附加土压力影响因素研究[J]. 现代隧道技术, 2025,62(2): 141-150
[15] 郭 盈 彭文庆 陈世强 张 琼 王佳伟.隧道行车道通风模型试验当量长度计算方法与验证[J]. 现代隧道技术, 2025,62(2): 230-240
Copyright 2010 by 现代隧道技术