[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (6) :219-23    DOI:
试验与监测 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
天山胜利隧道1-2号竖井自然通风测试与分析
(1.长安大学公路学院,西安 710064;2.中交中南工程局有限公司,长沙 410000)
Testing and Analysis of Natural Ventilation in No. 1-2 Shaft in the Tianshan Shengli Tunnel
(1.School of Highway, Chang'an University, Xi'an 710064; 2.CCCC Central South Engineering Co. Ltd., Changsha 410000)
Download: PDF (8048KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为探索高海拔超特长隧道深大竖井自然通风特性,以乌尉高速公路天山胜利隧道1-2号竖井为工程依托,通过在竖井井底和井口布设气象和风速固定测站,对1-2号竖井内的风速、风向、气温、气压进行长期监测,分析不同季节和不同外界温度条件下竖井自然风风速、风向与气温、气压的相互关系,最后结合流体力学与隧道通风网络理论,计算分析影响竖井自然风风速和风向的主要因素及影响关系。结果表明:天山胜利隧道施工期间,1-2号竖井在自然通风条件下主要表现为排风模式,竖井自然风与洞内外气象条件密切相关,当气温突变时会引起风向的改变;从春季到秋季竖井井口的自然风风速呈现出增大趋势,并且风速的波动频率和波动幅度也逐渐增大;单天不同时间段竖井自然风风速随温度、气压变化呈现出不同的正(负)相关关系,竖井井口自然风风速对于气温变化更敏感,阴天竖井井口自然风风速较晴天大,平均风速高出3.32 m/s;自然通风条件下,春、夏季竖井内的有效排风风速难以满足隧道排污需求,施工过程中可设置射流风机进行辅助排风;秋季竖井内的有效排风风速可以满足隧道排污需求,施工过程中可关闭风机以节约能耗;隧道内外的热位差对竖井内风向和风速变化起决定性作用,当隧道内温度大于外界温度时,热位差方向与超静压差方向一致,竖井排风,当洞内外温差增大时,竖井井底与井口之间热位差及井内排风风速越大,自然通风效应显著。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
陈建勋1 王贺起1
2 贾海洋1 刘伟伟1 罗彦斌1 赵志强1 黄登侠2
关键词高海拔   公路隧道   竖井   自然通风   现场测试     
Abstract: To investigate the natural ventilation characteristics of deep and large shafts in ultra-long tunnels at high altitudes, this study focused on No. 1-2 Shaft of the Tianshan Shengli Tunnel on the Urumqi-Yuli Highway. Fixed meteorological and wind speed monitoring stations were established at the shaft base and mouth to conduct longterm monitoring of wind speed, wind direction, air temperature, and atmospheric pressure. The relationships between natural wind parameters (wind speed, wind direction) and air temperature, air pressure under different seasonal and temperature conditions were analyzed. Using fluid dynamics and tunnel ventilation network theories, the primary factors influencing natural wind speed and direction in the shaft were calculated and analyzed. The results show that during the construction phase of the Tianshan Shengli Tunnel, No.1-2 shaft primarily exhibit an exhaust ventilation mode under natural ventilation conditions. The natural wind in the shaft is closely related to meteorological conditions inside and outside the tunnel. Abrupt temperature changes could reverse wind direction. In spring, summer, and autumn, natural wind speeds at the shaft mouth show an increasing trend, with higher frequency and amplitude of fluctuations. On a daily basis, natural wind speeds in different time periods exhibit varying positive or negative correlations with air temperature and pressure. The wind speed at the shaft mouth is more sensitive to temperature changes, with average wind speed higher than 3.32 m/s on cloudy days compared to sunny days. During spring and summer, the effective exhaust speed in the shafts fails to meet tunnel ventilation requirements for pollutant removal, suggesting the need for jet fans to assist ventilation during construction. In contrast, the effective exhaust speed in autumn is sufficient for pollutant removal, allowing for the shutdown of ventilation fans to conserve energy. The thermal potential difference inside and outside the tunnel plays a decisive role in change in wind speed and direction. When the tunnel temperature exceeds external temperatures, the directions of thermal potential difference and hyperstatic pressure difference are aligned, increasing the shaft exhaust wind speed. Moreover, when the temperature difference inside and outside the tunnel is greater, the thermal potential difference between the shaft base and shaft mouth, as well as the exhaust wind speed inside the shaft, are greater, and the natural ventilation effect is more significant.
KeywordsHigh altitude,   Highway tunnel,   Shaft,   Natural ventilation,   Field testing     
基金资助:国家自然科学基金青年科学基金(52208385);新疆维吾尔自治区重大科技专项(2020A03003-5);中交一公局集团项目(X-GLQSGS(J)-XIJ-WY-05-JS-082,X-GL-QSGS(J)-XIJ-WY-05-JS-083).
作者简介: 陈建勋(1969-),男,博士,教授,主要从事隧道工程教学和科研工作,E-mail: chenjx1969@chd.edu.cn. 通讯作者:刘伟伟(1990-),男,博士,副教授,主要从事隧道工程教学和科研工作,E-mail: liuwwchd@163.com.
引用本文:   
陈建勋1 王贺起1, 2 贾海洋1 刘伟伟1 罗彦斌1 赵志强1 黄登侠2 .天山胜利隧道1-2号竖井自然通风测试与分析[J]  现代隧道技术, 2024,V61(6): 219-23
CHEN Jianxun1 WANG Heqi1, 2 JIA Haiyang1 LIU Weiwei1 LUO Yanbin1 ZHAO Zhiqiang1 HUANG Dengxia2 .Testing and Analysis of Natural Ventilation in No. 1-2 Shaft in the Tianshan Shengli Tunnel[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(6): 219-23
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I6/219
 
没有本文参考文献
[1] 张军伟1 杨 哲1 毛锦波2 张斌斌2.2003—2022年我国竖井施工事故发生规律与分布特征[J]. 现代隧道技术, 2024,61(6): 1-8
[2] 何世永1,2 唐欢欢2 梁 波1,2 史玲娜3 李 杰2 刘 豪2 王晓钰2.特长公路隧道通风照明联动理论及技术研究现状与进展[J]. 现代隧道技术, 2024,61(4): 28-40
[3] 刘 媛1,2,3 于 丽1,2,3 王 雪1,2,3 郭晓晗1,2,3 路 明1,2,3.新能源汽车非排放产物生成规律及其对隧道需风量的影响研究[J]. 现代隧道技术, 2024,61(4): 41-50
[4] 任 锐1,2 肖臻郅1,2 王亚琼1,2 史培龙1 王立志3.基于交通流特征的高海拔隧道通风能效研究[J]. 现代隧道技术, 2024,61(4): 51-59
[5] 冯守中1 周 龙2 冒卫星1 李 洁3 高 巍1.侧壁涂料对公路隧道光环境与人眼视觉特性影响试验研究[J]. 现代隧道技术, 2024,61(3): 220-227
[6] 王明年1,2 邓 涛3 于 丽1,2.中国交通隧道运营及防灾通风技术发展与展望[J]. 现代隧道技术, 2024,61(2): 152-166
[7] 李建斌.中国隧道掘进机技术进展与展望[J]. 现代隧道技术, 2024,61(2): 178-189
[8] 郑金龙1 杨 枫1 蔚艳庆1 吴 剑2 郑 波2.雀儿山隧道建设运营关键技术及创新[J]. 现代隧道技术, 2024,61(2): 272-279
[9] 屈建荣1 敬雅文2 任兆丹1 熊 颖2 陈雪锋1 冯冀蒙2.基于围岩破坏特征的单洞四车道公路隧道围岩分级修正研究[J]. 现代隧道技术, 2024,61(1): 48-55
[10] 王 亮 张 浩.基于新能源车组成的特长水下公路隧道运营通风方案研究[J]. 现代隧道技术, 2024,61(1): 67-74
[11] 石钰锋1,2 蔡家城1 张 涛3 张晗秋4 李君贤1 顾大均5.冻结法地铁联络通道施工对邻近盾构隧道管片影响的测试分析[J]. 现代隧道技术, 2024,61(1): 190-199
[12] 李嘉豪1 习明星2 沈 奕1 刘 安2 朱合华.基于SimaPro的公路隧道建造阶段碳排放计算与构成评估[J]. 现代隧道技术, 2023,60(6): 20-28
[13] 张小英1 刘 陶2 沈 奕2 刘 安3.照明对公路隧道全寿命期碳排放的影响分析[J]. 现代隧道技术, 2023,60(6): 40-47
[14] 魏新江1,2 李 帅1 杜世明3 赵 军4 夏立锋3 韩同春1.公路隧道火灾预警及烟雾防控与安全疏散研究与展望[J]. 现代隧道技术, 2023,60(6): 100-110
[15] 王方超1 刘红森1 陈长坤2 焦伟冰2.特长公路隧道平导抽吸式排烟策略数值模拟研究[J]. 现代隧道技术, 2023,60(5): 120-127
Copyright 2010 by 现代隧道技术