[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2025, Vol. 62 Issue (1) :157-169    DOI:
数值分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
地铁隧道双洞交叉穹拱形地下结构受力特点分析
(1.山东高速基础设施建设有限公司,济南 250000;2.山东科技大学,青岛 266590; 3.山东省交通规划设计院集团有限公司,济南 250101)
Analysis of the Stress Characteristics at the Dome Type Metro Tunnel Intersection
(1. Shandong Expressway Infrastructure Construction Co., Ltd., Jinan 250000; 2. Shandong University of Science and Technology, Qingdao 266590; 3. Shandong Provincial Transportation Planning and Design Institute Group Co., Ltd., Jinan 250101)
Download: PDF (9976KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 以某地铁车站为研究对象,采用模型试验、数值模拟及现场监测等方法,对比分析车站风道进入主体隧道交叉段单向拱与穹拱(双向拱)两种洞型下围岩及支护结构受力特征。研究发现:穹拱形结构更有利于隧道稳定,相较于单向拱结构围岩沉降量减少约7%,对围岩扰动范围更小;内拐角围岩应力状态呈现“三向—两向—单向”的变化趋势,且产生裂隙,需重点关注;喷层拉应力最大值为0.11 MPa,位于交叉段内拐角和交叉段—主体交叉截面位置处;下台阶开挖时风道与主体隧道的中空注浆锚杆轴力降低,而交叉段预应力锚杆几乎不受影响,且此段拱架受力明显不对称,靠近主体隧道侧拱架局部受拉。基于以上研究,提出先架设内套钢架再破除原支护钢架的“先支后破”工法,现场监测结果显示穹拱形隧道最大沉降约为5.2 mm,支护结构受力均在安全范围内,隧道整体稳定。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
王明法1 刘国山1 闫建权2 满新杰1 李洪泽2 周洋洋1 李为腾2 郭光明1邵 行3 姜维亮1
关键词交叉隧道   穹拱   受力特点   主动支护   变形     
Abstract: Taking a certain subway station as the research object, this study employs model testing, numerical simu? lation, and on-site monitoring to conduct a comparative analysis of the stress characteristics of surrounding rock and support structures under two tunnel structure forms: the unidirectional arch and the dome (bidirectional arch) at the intersection section of the station's air duct and the main tunnel. The research findings indicate that the dome shape is more conducive to tunnel stability, with surrounding rock settlement reduced by approximately 7% compared to the unidirectional arch, and a smaller disturbance range to the surrounding rock. The stress state of the surrounding rock at the inner corner exhibits a trend of "three-dimensional-two-dimensional-one-dimensional" changes, leading to the formation of cracks that require close attention. The maximum tensile stress in the sprayed concrete layer is0.11 MPa, located at the inner corner of the intersection and at the cross-section between the intersection section and main tunnel. During the excavation of the lower bench, the axial force of the hollow grouting anchor bolts in the air duct and the main tunnel decreases, while the prestressed anchor bolts in the intersection section are almost unaffected. Additionally, the stress on the steel arch in this section is significantly asymmetric, with localized tensile stress occurring in the steel arch near the main tunnel side. Based on these findings, a "support first, break later"construction method is proposed, which involves first erecting an inner steel arch before dismantling the original steel arch support. On-site monitoring shows that the maximum settlement of the dome-shaped tunnel is approximately 5.2 mm, and the stress on the support structure remains within a safe range, ensuring the overall stability of the tunnel.
KeywordsIntersecting tunnel,   Dome-shaped tunnel structure,   Stress characteristics,   Active support,   Deformation     
基金资助:山东省自然科学基金(ZR2022ME212).
作者简介: 王明法(1984-),男,高级工程师,主要从事桥隧方面的研究工作,E-mail:benbenshu@gmail.com. 通讯作者:李为腾(1987-),男,博士,教授,主要从事地下工程支护理论与技术方面的教学和科研工作,E-mail:lwteng2007@163.com.
引用本文:   
王明法1 刘国山1 闫建权2 满新杰1 李洪泽2 周洋洋1 李为腾2 郭光明1邵 行3 姜维亮1 .地铁隧道双洞交叉穹拱形地下结构受力特点分析[J]  现代隧道技术, 2025,V62(1): 157-169
WANG Mingfa1 LIU Guoshan1 YAN Jianquan2 MAN Xinjie1 LI Hongze2 ZHOU Yangyang1 LI Weiteng2GUO Guangming1 SHAO Xing3 JIANG Weiliang1 .Analysis of the Stress Characteristics at the Dome Type Metro Tunnel Intersection[J]  MODERN TUNNELLING TECHNOLOGY, 2025,V62(1): 157-169
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2025/V62/I1/157
 
没有本文参考文献
[1] 张 杉 孟陆波 屈小七 李天斌 张 煜.地下水软化作用下红砂岩变形破坏机理试验研究[J]. 现代隧道技术, 2025,62(1): 201-211
[2] 陈 旺1 彭焱锋1 刘维正2 张思宇2 陈常辉1.三孔顶管上穿施工对既有隧道与地表变形影响分析[J]. 现代隧道技术, 2025,62(1): 170-182
[3] 张成友1 汪 波1 杜泽昊1 高筠涵1 谭力豪2.不同锚杆支护体系防岩爆适宜性分析与锚杆参数优化研究[J]. 现代隧道技术, 2024,61(6): 64-73
[4] 张明书1 姚 琛1 吴贤国2 陈虹宇3 冯宗宝2 杨 赛2.基于BO-Adam-Bi-LSTM的盾构下穿既有隧道变形预测及调控[J]. 现代隧道技术, 2024,61(6): 92-99
[5] 薛青松.大断面矩形顶管上跨地铁隧道施工变形分布特征及控制措施[J]. 现代隧道技术, 2024,61(6): 148-161
[6] 刘朝阳1 蒋 凯2 梁 禹2,3,4.基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析[J]. 现代隧道技术, 2024,61(5): 71-78
[7] 李立军.考虑土体空间变异性的基坑开挖对土体沉降 和邻近管道变形影响分析[J]. 现代隧道技术, 2024,61(5): 193-199
[8] 宋越鹏1 范晓锋2 梁 禹2,3,4 彭红国5 张晗炜5.城际铁路隧道深大圆形竖井开挖阶段变形监测分析[J]. 现代隧道技术, 2024,61(5): 219-226
[9] 杨 益1,2 施成华1,2,3 郑可跃1,2 彭梦龙1,4 娄义黎1,2.高地应力红层软岩隧道大变形分级控制技术研究[J]. 现代隧道技术, 2024,61(5): 252-262
[10] 吕林海1,2,3 蒋明杰1,2 谢忠铭1,2 黄钟晖4 王炳华3 梅国雄5.基于层状Mindlin解的基坑开挖引起下卧隧道变形计算方法[J]. 现代隧道技术, 2024,61(4): 95-104
[11] 刘 博1,2 郑金雷1,3,4 张 昭1 麻建飞4.新建隧道上跨施工引起既有盾构隧道纵向变形力学模型研究[J]. 现代隧道技术, 2024,61(4): 112-118
[12] 朱美恒1 陈思睿2 黄忠凯2 李永波1 张吾渝3 张冬梅2.地表超载作用下大直径全预制装配盾构隧道受力变形规律研究[J]. 现代隧道技术, 2024,61(4): 161-171
[13] 王建宇.“对抗”还是“屈让”?——围岩挤压性大变形处治的基本理念[J]. 现代隧道技术, 2024,61(3): 1-7
[14] 浣宇翔1 田礼勇2 杨文波1 李昊豫1 刘 勇3 唐 浩3 姚超凡1.软岩大变形隧道支护拆换力学与时空变形行为研究[J]. 现代隧道技术, 2024,61(3): 96-107
[15] 朱建林1 王立川2,3 刘志强1 马利遥2,3 李庆斌2.考虑流变效应的软岩大变形隧道多层支护作用机理分析[J]. 现代隧道技术, 2024,61(3): 18-24
Copyright 2010 by 现代隧道技术