[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (5) :252-262    DOI:
规划设计与施工 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
高地应力红层软岩隧道大变形分级控制技术研究
(1.高速铁路建造技术国家工程研究中心,长沙 410075;2.中南大学土木工程学院,长沙 410075; 3.中国中铁股份有限公司,北京 100039;4. 同济大学土木工程学院,上海 200092)
Research on Large Deformation Grading Control Technology for High Stress Red Layered Soft Rock Tunnels
(1.National Engineering Research Center of High-speed Railway Construction Technology,Changsha 410075; 2. School of Civil Engineering,Central South University,Changsha 410075;3. China Railway Group Limited,Beijing 100039;4. College of Civil Engineering, Tongji University, Shanghai 200092)
Download: PDF (7442KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 高地应力红层软岩是我国西南地区隧道建设中常见的不良地质,隧道穿越这类地层时常发生挤压大变形现象。以玉磨铁路新华隧道穿越高地应力红层软岩段为工程背景,基于现场地质条件、结构破坏特征、变形监测数据分析大变形灾变成因,并提出高地应力红层软岩隧道大变形分级控制技术,通过数值模拟和现场应用验证分级控制方案的有效性。研究结果表明:新华隧道大变形段地层属典型红层软岩,围岩变形具有变形速率大、变形量大和持续时间长等特点,并伴有初期支护开裂脱落、钢拱架变形扭曲、初期支护侵限、小导管失效等情况;新华隧道大变形主要是高地应力、软弱地层条件、红层软岩应变软化和扩容膨胀效应以及支护不及时等因素耦合作用导致的;根据围岩强度应力比,将现场大变形等级分为轻微大变形、中等大变形和严重大变形3个等级,针对不同变形等级提出大变形分级控制方案,数值模拟和现场应用情况显示变更后的控制方案能够显著降低围岩变形,3种控制方案下围岩变形均在预留变形范围内。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
杨 益1
2 施成华1
2
3 郑可跃1
2 彭梦龙1
4 娄义黎1
2
关键词高地应力   红层软岩   大变形   施工控制技术     
Abstract: High-stress red layer soft rock is a common adverse geological condition in tunnel construction in South? west China, where tunnels often experience large deformation caused by extrusion when passing through such strata.Taking the Xinhua tunnel on the Yuxi-Mohan Railway, which passes through a high-stress red layer soft rock section, as the engineering background, this study analyzes the causes of large deformation disasters based on field geological conditions, structural damage characteristics, and deformation monitoring data. It proposes a graded control technology for large deformation of soft rock tunnels in high-stress red layers. The effectiveness of the control scheme is verified through numerical simulation and field application. The research results indicate that the stratum of the large deformation section in the Xinhua tunnel is a typical red layer soft rock with characteristics such as high deformation rate, large deformation magnitude, and prolonged deformation duration. Issues like cracking and detachment of initial support, deformation and twisting of steel arch frames, encroachment of initial support, and failure of small conduits were observed. The main causes of large deformation in the Xinhua tunnel include the coupled effects of high in-situ stress, weak strata conditions, strain softening, and volume expansion effects of red bed soft rock, as well as untimely support. The large deformation was categorized into three levels: slight, moderate, and severe, according to the stress-to-strength ratio of the surrounding rock. For each deformation level, a corresponding control scheme was proposed. Numerical simulations and field applications demonstrated that the adjusted control schemes significantly reduced the deformation of the surrounding rock, with the deformation of the surrounding rock within the reserved range under all three control schemes.
KeywordsHigh in-situ stress,   Red layer soft rock,   Large deformation,   Construction control technology     
基金资助:国家自然科学基金项目(52178402);中国中铁股份有限公司科技研究开发计划项目(2021-重点-09,2022-重点-10).
作者简介: 杨 益(1999-),男,硕士研究生,主要从事软岩大变形隧道控制技术的研究工作,E-mail: Yangyicsu2023@163.com. 通讯作者:郑可跃(1996-),男,博士研究生,主要从事软岩大变形隧道灾变机制及控制技术的研究工作,E-mail:Zkycsu@163.com.
引用本文:   
杨 益1, 2 施成华1, 2等 .高地应力红层软岩隧道大变形分级控制技术研究[J]  现代隧道技术, 2024,V61(5): 252-262
YANG Yi1, 2 SHI Chenghua1, 2 etc .Research on Large Deformation Grading Control Technology for High Stress Red Layered Soft Rock Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(5): 252-262
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I5/252
 
没有本文参考文献
[1] 周 嵩1 潘 岳1,2 刘永胜1,2 谢 韬1,2 张理蒙1 张继超1.极高地应力破碎地层斜井进正洞力学行为分析及施工优化研究[J]. 现代隧道技术, 2024,61(4): 142-150
[2] 王建宇.“对抗”还是“屈让”?——围岩挤压性大变形处治的基本理念[J]. 现代隧道技术, 2024,61(3): 1-7
[3] 包烨明1 陈子全2 周子寒2 汪 波2.高地应力软岩隧道快速施工围岩稳定性分析[J]. 现代隧道技术, 2024,61(3): 25-34
[4] 浣宇翔1 田礼勇2 杨文波1 李昊豫1 刘 勇3 唐 浩3 姚超凡1.软岩大变形隧道支护拆换力学与时空变形行为研究[J]. 现代隧道技术, 2024,61(3): 96-107
[5] 朱建林1 王立川2,3 刘志强1 马利遥2,3 李庆斌2.考虑流变效应的软岩大变形隧道多层支护作用机理分析[J]. 现代隧道技术, 2024,61(3): 18-24
[6] 陈志敏1 王 洪1 龚 军2 李增印2 彭 易1.高地应力软岩隧道双层初期支护围岩变形特征[J]. 现代隧道技术, 2024,61(3): 85-95
[7] 杨赵峰1 汪 波2 杜永全1 黄长宽1 樊 勇1.主动支护技术在海东隧洞软岩大变形中的应用[J]. 现代隧道技术, 2024,61(3): 245-252
[8] 常伟学1,2 梁庆国1 李奇伟1 樊纯坛1,3 魏 健4.富水千枚岩隧道大变形特征及控制措施研究[J]. 现代隧道技术, 2024,61(3): 236-244
[9] 王 冠.严重挤压性围岩隧道平行导洞双层支护作用机理研究[J]. 现代隧道技术, 2023,60(4): 138-146
[10] 陈锡武 1 卿伟宸 1 刘国强 2.高地应力断层带超大断面隧道施工设计[J]. 现代隧道技术, 2023,60(4): 204-212
[11] 袁传保 1 鲁金林 1 陶玉敬 1 宋 章 1 刘国强 2.复杂强震山区跃龙门隧道重大工程地质问题研究[J]. 现代隧道技术, 2023,60(4): 188-195
[12] 陶玉敬 1 袁传保 1 王茂靖 1 宋 章 1 刘国强 2.成兰铁路跃龙门隧道深埋越岭段大变形原因分析研究[J]. 现代隧道技术, 2023,60(4): 229-236
[13] 刘国强.跃龙门隧道软岩大变形两台阶快速成环法施工技术研究[J]. 现代隧道技术, 2023,60(3): 252-258
[14] 蒲 松 1 向 龙 2 廖 杭 1 余 涛 1 姚志刚 1 方 勇 1 朱牧原 1.极高地应力层状围岩隧道偏压演化规律及围岩控制[J]. 现代隧道技术, 2023,60(1): 90-99
[15] 于国亮 1 娄义黎 2,3 吴国鹏 1 施成华 2,3 郑可跃 2,3.高地应力下顺层偏压隧道开挖变形控制技术研究[J]. 现代隧道技术, 2022,59(5): 237-245
Copyright 2010 by 现代隧道技术