[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2025, Vol. 62 Issue (5) :183-    DOI:
数值分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
富水弱胶结红层隧道涌突水灾害机理及防控措施研究
(1.极端环境岩土与隧道工程智能建养全国重点实验室,成都 610031;2.西南交通大学土木工程学院,
成都 610031;3.中国十九冶集团有限公司,攀枝花 617000)
Research on the Mechanism and Prevention Measures of Water Inrush in Weakly Cemented and Water-rich Red-bed Tunnels#br#
(1 State Key Laboratory of Intelligent Geotechnics and Tunnelling, Chengdu 610031; 2 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031; 3 China 19th Metallurgical Corporation, Panzhihua 617000)
Download: PDF (18305KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 受薄层状岩体软弱构造及地下水环境共同影响,富水弱胶结红层隧道易发生涌突水灾害。以开云高速公路龙缸隧道为依托,通过现场测试及室内试验,揭示隧址区涌突水段致灾构造特征及弱胶结红层岩体的破坏力学机制;建立三维离散元粘合块体(BBM)-裂隙流耦合模型,分析隧道涌突水灾害演化过程,探明弱胶结岩层厚度与倾角等对灾害影响,并分析工程治理效果。研究结果表明:(1) 岩样渗透破坏试验揭示,渗流主要发生在岩体裂隙中。(2) 涌突水灾害伴随弱胶结红层岩体裂隙扩展和渗流速率增大而发生,二者相互作用导致掌子面围岩失稳和水压陡降。(3) 岩层厚度对围岩失稳及涌突水影响显著,结构面倾角影响相对较小。0.3 m层厚条件下,开挖进入破碎带3 m时涌水量达954.2 m3/h,掌子面前方扰动破坏区与渗透破坏区范围分别为5.91 m和3.14 m。(4) 泄水降压能有效降低掌子面水压并抑制渗透破坏,注浆加固可提升岩体强度并封堵渗流通道,“泄水-注浆”协同防控措施治理效果显著。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
魏 嘉1
2 朱星宇1
2 张志强1
2 葛 宏1
2 周泽林3
关键词高速公路隧道   弱胶结红层   涌突水灾害   粘合块体(BBM)-裂隙流模型   流固耦合   工程治理     
Abstract: Affected by both weakly stratified rock structures and groundwater conditions, water inrush disasters are prone to occur in weakly cemented and water-rich red-bed tunnels. Relying on the Longgang Tunnel of the Kaiyun Expressway, field tests and laboratory experiments are carried out to reveal the disaster-causing structural characteristics of water-bearing sections in the tunnel area, and the failure mechanical mechanism of weakly cemented red-bed rock mass. A three-dimensional discrete element Bonded Block Model (BBM)-fracture flow coupling model is established to analyze the evolution process of water inrush disaster in tunnels, investigate the influence of weakly cemented rock layer thickness and dip angle on the disaster, and evaluate the effectiveness of engineering control measures. The results show that: (1) Permeability failure tests indicate that seepage mainly occurs in rock fractures. (2) Water inrush is accompanied by fracture propagation and an increase in seepage rate in weakly cemented red-bed rock mass, and their interaction leads to the instability of surrounding rock at the tunnel face and a sharp drop in water pressure. (3) Rock layer thickness has a significant influence on surrounding rock instability and water inrush, while the influence of structural plane dip angle is relatively small. Under the condition of 0.3 m layer thickness, when excavation enters 3 m into the fractured zone, the water inflow reaches 954.2 m³/h, and the disturbance failure zone and seepage failure zone in front of the tunnel face reach 5.91 m and 3.14 m, respectively. (4) Drainage and pressure relief can effectively reduce water pressure at the tunnel face and inhibit seepage failure, and grouting reinforcement can improve rock mass strength and block seepage channels. The combined “drainage-grouting” control measure shows significant mitigation effectiveness.
KeywordsHighway tunnel,   Weakly cemented red-bed,   Water inrush disaster,   Bonded Block Model (BBM)-fracture flow model,   Fluid-solid coupling,   Engineering control     
基金资助:国家自然科学基金(52378414).
作者简介: 魏 嘉(2000-),男,硕士研究生,主要从事隧道及地下工程研究工作,E-mail: 3028870644@qq.com.
引用本文:   
魏 嘉1, 2 朱星宇1, 2 张志强1等 .富水弱胶结红层隧道涌突水灾害机理及防控措施研究[J]  现代隧道技术, 2025,V62(5): 183-
WEI Jia1, 2 ZHU Xingyu1, 2 ZHANG Zhiqiang1 etc .Research on the Mechanism and Prevention Measures of Water Inrush in Weakly Cemented and Water-rich Red-bed Tunnels#br#[J]  MODERN TUNNELLING TECHNOLOGY, 2025,V62(5): 183-
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2025/V62/I5/183
 
没有本文参考文献
[1] 孙克国 1 甄映州 1 魏 勇 1 肖支飞 2 杨 朋 3 方纯彬 4 蔡定淮 4 刘广明 5.富水岩溶区基坑稳定性影响规律与分析[J]. 现代隧道技术, 2023,60(1): 149-158
[2] 傅鹤林 1,2 安鹏涛 1,2 成国文 3 李 鲒 1,2 余小辉 3 陈 龙 1,2.富水区隧道环向盲管间距优化分析[J]. 现代隧道技术, 2022,59(2): 20-27
[3] 郭咏辉 1 阳军生 2.施工冷缝条件下富水铁路隧道结构裂损模拟分析[J]. 现代隧道技术, 2021,58(1): 141-147
[4] 李 明 严松宏 潘春阳 张旭斌.富水大断面黄土隧道开挖流固耦合效应分析[J]. 现代隧道技术, 2019,56(4): 81-88
[5] 黄振恩 吴俊 张洋 刘陕南.考虑流固耦合效应的盾构隧道开挖面稳定性研究[J]. 现代隧道技术, 2018,55(5): 61-71
[6] 罗 勇 1 李玉文 2 袁家伟 1 刘大刚 1 王明年.高速公路隧道运营安全风险评估研究[J]. 现代隧道技术, 2016,53(6): 25-30
[7] 潘建立1 高海东2 史培新3.拱北隧道暗挖段管幕组合方案优化研究[J]. 现代隧道技术, 2015,52(3): 55-62
[8] 曹校勇, 张龙, 林永锋.羊桥坝隧道大型干溶洞处理方案研究[J]. 现代隧道技术, 2014,51(4): 185-190
[9] 冯迎军.碳质板岩隧道塌方处理方案探讨[J]. 现代隧道技术, 2014,51(2): 178-181
[10] 牛双建1, 2, 3, 杨大方2, 林志斌3.软土地区“群坑”流固耦合分析[J]. 现代隧道技术, 2014,51(1): 90-96
[11] 江勇顺1,2 李天斌1 张广洋3.山区高速公路隧道围岩分级智能判别系统初探[J]. 现代隧道技术, 2013,50(5): 6-11
[12] 龙江1 夏 换2,3 周宝库4 胡坤1 刘旭1 艾志久1.水平定向钻回拖速度对孔壁稳定性的影响[J]. 现代隧道技术, 2013,50(5): 135-139
[13] 何成1, 吴德胜2.汶川地震震中区高速公路隧道超前地质预报方法[J]. 现代隧道技术, 2012,49(3): 182-185
[14] 刘建, 刘丹.基于Bayes判别分析方法的叙岭关隧道溶洞水源识别[J]. 现代隧道技术, 2012,49(1): 72-77
[15] 余晶, 程勇, 贾瑞华.港珠澳大桥珠海连接线拱北隧道方案论证[J]. 现代隧道技术, 2012,49(1): 119-125
Copyright 2010 by 现代隧道技术