Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2012, Vol. 49 Issue (2) :21-27    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Shield Construction Risks and Quality Control Measures for Lot 2222 of the Shenzhen Metro Line 2
(1 Shenzhen Municipal Engineering Corp., Shenzhen 518000;
2 Shenzhen Water Resources Planning & Design Institute, Shenzhen 518000)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Shield technology was adopted for the construction of the tunnel section connecting the Qiaoxiang, Xiangmi, and North Xiangmei Stations of Lot 2222. Completed on September 10, 2010, this project required overcoming the difficulties of hard rock, rock consisting of a soft upper stratum and hard lower stratum, the under-passing of existing buildings, and passing a mined tunnel during its construction. Focused on the key points of construction risks and quality control, this paper presents the concrete requirements for the two running tunnels in this lot in terms of construction management as well as the results achieved.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
DENG Bin-1
GU Xiao-Fang-2
KeywordsShield tunnel   Risk management   Quality control   Construction technology   Driving parameters     
Abstract: Shield technology was adopted for the construction of the tunnel section connecting the Qiaoxiang, Xiangmi, and North Xiangmei Stations of Lot 2222. Completed on September 10, 2010, this project required overcoming the difficulties of hard rock, rock consisting of a soft upper stratum and hard lower stratum, the under-passing of existing buildings, and passing a mined tunnel during its construction. Focused on the key points of construction risks and quality control, this paper presents the concrete requirements for the two running tunnels in this lot in terms of construction management as well as the results achieved.
KeywordsShield tunnel,   Risk management,   Quality control,   Construction technology,   Driving parameters     
published: 2012-02-16
Cite this article:   
DENG Bin-1, GU Xiao-Fang-2 .Shield Construction Risks and Quality Control Measures for Lot 2222 of the Shenzhen Metro Line 2[J]  MODERN TUNNELLING TECHNOLOGY, 2012,V49(2): 21-27
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2012/V49/I2/21
 
No references of article
[1] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[2] SU Heng1 WANG Shimin1 ZHU Xuhong2 QIN Shanliang3.Study on the Mechanical Characteristics of Shield Cutter Cutting Pile Foundation Main Reinforcement Considering Spatial Effects[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 139-150
[3] CHEN Yunyao.Risk Mitigation Measures and Excavation Analysis of Shield Launching beneath an Existing Metro Station on the First Terrace of the Yangtze River[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 249-258
[4] ZHANG Guang1 GONG Qiuming1 XIE Xingfei1 PEI Chengyuan2 SHANG Ceng2.Interval Prediction of TBM Parameters in Stable Excavation Sections Based on Bootstrap-COA-BiGRU Model[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 121-131
[5] ZHANG Huan1, 2 ZHANG Shishu3 LI Tianbin1, 2 YANG Gang1, 2 LI Shisen1, 2 XIAO Huabo3 CHEN Weidong3.GAPSO-LightGBM-based Intelligent Prediction Method of Surrounding Rock Grade in TBM Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 98-109
[6] XIONG Yingjian1 LIU Sijin2 MA Yuyang2 FANG Yong1 HE Chuan1.Optimization Method for Shield Tunnelling Parameters Based on PSO Algorithm and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(6): 165-174
[7] XIE Miao WANG Haonan LI Siyao TIAN Bo LIU Yafeng ZHANG Hongyu.Study on TBM Tunnelling Parameters Under Ultra-small-radius Turning Conditions Based on Field Data[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 58-66
[8] LI Zifeng1 DUAN Baoliang2.Study on Tunnel Face Collapse and Corresponding Treatment Measures in Shield Tunnelling in Silty-fine Sand Layer[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 237-245
[9] LIU Zhaowei.Research on the Technology for the Shield Tunnel Crossing the Railway Marshalling Station in the Pebble-boulder Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(4): 226-233
[10] ZHANG Qinglong1,2 ZHU Yanwen1 MA Rui2 YAN Dong3 YANG Chuangen3 CUI Tonghuan3 LI Qingbin2.Study on Prediction of TBM Tunnelling Parameters Based on Attentionenhanced Bi-LSTM Model[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(4): 69-80
[11] LIU Hongzhi1,2 GAN Congyu1,2 ZHAO Liang1,2 ZUO Shirong1,2 ZHANG Hanshuo1,2.Research on the Dynamic Construction Technology of Slurry Shields Based on the Change of Geological Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(3): 246-252
[12] ZHANG Bangchao1 LIU Hongliang2 LEI Fengguo2 PENG Guanghuo2.On Settlement Control in Large-diameter EPB Shield Tunnelling under Civil Housing Complex in Upper-soft and Lower-hard Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(2): 172-181
[13] SONG Yang1 WANG Weiyi2 DU Chunsheng3.On Parameter Optimization for a Slurry Shield Approaching Construction under Existing Subway Tunnels in Water-Rich Pebble and Mudstone Composite Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(5): 85-95
[14] ZI Xiaoyu1 SHEN Yusheng1 ZHU Shuangyan1 LUO Ningning2 YANG Jiaqi1 CAO Bangjun1.Study on the Deformation Failure Laws and Support Measures for Tunnels in Layered Phyllite[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(3): 196-204
[15] YANG Jihua1 GUO Weixin1 YAN Changbin2 MIAO Dong1.Study on Optimization of TBM Driving Parameters Based on the Energy Consumption[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(1): 54-60
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY