Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (4) :69-80    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on Prediction of TBM Tunnelling Parameters Based on Attentionenhanced Bi-LSTM Model
 
(1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083; 2. State Key Laboratory of Water and Sediment Science and Water Conservancy and Hydropower Engineering, Tsinghua University, Beijing 100084; 3. Huaneng Tibet Hydropower Safety Engineering Technology Research Center, Chengdu 610041)
Download: PDF (5846KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Guide  
Abstract Prediction of TBM tunnelling parameters with Bi-LSTM model is subject to shortcomings in model training time and convergence speed. So, an intelligent prediction model of attention-enhanced bidirectional long-/shortterm memory network (Bi-LSTM+EMB_ATT) formed by parallel fusion was proposed by improving the use of traditional attention mechanisms, and the complete tunneling cycle data was selected to predict the tunneling parameters in the stable section of TBM. The operation data of TBM3 Section of Jilin Songhua River Diversion Project were collected and divided into a training set and a test set and preprocessed by the binary state discriminant function and other methods, and then the Pearson method was adopted to analyze the results. The 21-dimensional tunnelling parameters of the complete tunneling cycle section was used as the input of the prediction model to compare and analyze the parallel-connected Bi-LSTM+EMB_ATT model and serial-connected Bi-LSTM+ATT model. The results show that the goodness of fit of Bi-LSTM+EMB_ATT model for predicting TBM tunneling parameters is above 0.91 with average absolute error less than 2.7%, which is higher than that of Bi-LSTM+ATT model.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
ZHANG Qinglong1
2 ZHU Yanwen1 MA Rui2 YAN Dong3 YANG Chuangen3 CUI Tonghuan3 LI Qingbin2
KeywordsTBM   Enhancement of attention mechanism   Bi-LSTM model   Complete tunneling cycle   Prediction of tunneling parameters     
Abstract: Prediction of TBM tunnelling parameters with Bi-LSTM model is subject to shortcomings in model training time and convergence speed. So, an intelligent prediction model of attention-enhanced bidirectional long-/shortterm memory network (Bi-LSTM+EMB_ATT) formed by parallel fusion was proposed by improving the use of traditional attention mechanisms, and the complete tunneling cycle data was selected to predict the tunneling parameters in the stable section of TBM. The operation data of TBM3 Section of Jilin Songhua River Diversion Project were collected and divided into a training set and a test set and preprocessed by the binary state discriminant function and other methods, and then the Pearson method was adopted to analyze the results. The 21-dimensional tunnelling parameters of the complete tunneling cycle section was used as the input of the prediction model to compare and analyze the parallel-connected Bi-LSTM+EMB_ATT model and serial-connected Bi-LSTM+ATT model. The results show that the goodness of fit of Bi-LSTM+EMB_ATT model for predicting TBM tunneling parameters is above 0.91 with average absolute error less than 2.7%, which is higher than that of Bi-LSTM+ATT model.
KeywordsTBM,   Enhancement of attention mechanism,   Bi-LSTM model,   Complete tunneling cycle,   Prediction of tunneling parameters     
Fund: 
Cite this article:   
ZHANG Qinglong1, 2 ZHU Yanwen1 MA Rui2 YAN Dong3 YANG Chuangen3 CUI Tonghuan3 LI Qingbin2 .Study on Prediction of TBM Tunnelling Parameters Based on Attentionenhanced Bi-LSTM Model[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(4): 69-80
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I4/69
 
No references of article
[1] HOU Kunzhou.Study on TBM Deviation Correction and Direction Control Based on the Deep Transfer Learning (DTL)[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(4): 81-89
[2] CHEN Fan1 HE Chuan1 HUANG Zhonghui2 MENG Qingjun2 LIU Chuankun1 WANG Shimin1.Study on the Adaptability and Selection of Multi-mode Tunnelling Equipment for Subway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(3): 53-62
[3] Wang Shuangjing1,2 Wang Yujie1 Li Xu3 Liu Lipeng1 Yin Tao1,2.Study of Standardized Pre-processing Method of TBM Tunnelling Data[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(2): 38-44
[4] FENG Huanhuan1,2 HONG Kairong1,2 YANG Yandong2 YANG Luwei1 SI Jingzhao1 YOU Jinhu3.Research and Application of Key Construction Technologies for TBM-driven Tunnels under Extreme Complex Geological Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(1): 42-54
[5] WANG Shuaishuai1 MAO Jinbo2 ZHANG Binbin2 Li Yalong2 ZHAO Honggang2.General Construction Technology Scheme of Tianshan Shengli Tunnel on Urumqi-Yuli Expressway[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(1): 55-68
[6] ZHANG Jinliang1 HUANG Qiuxiang2 WANG Xueying1 HU Chao2 ZHANG Shaoxuan2.Study on Engineering Influence of Defects in Pea Gravel Backfilling and Grouting Layer[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(6): 163-172
[7] GAO Xin WANG Wenjuan LI Qingfei FENG Shijie WU Qi.Research on the Routing Scheme of a Double Shield TBM Passing through the Metro Station[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(5): 56-64
[8] YANG Jihua1 GUO Weixin1 YAN Changbin2 MIAO Dong1.Study on Optimization of TBM Driving Parameters Based on the Energy Consumption[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(1): 54-60
[9] XU Peng1 HUANG Jun1 ZHOU Jianbo1 TANG Jinzhou2.3D Numerical Simulation of the Interaction between Rock Mass and Shield TBM Passing through the Fault Fracture Zone[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(6): 63-69
[10] LI Gang1 LI Xiaojun1 YANG Wenxiang2 HAN Dong1.Research on Prediction of TBM Driving Parameters Based on Deep Learning[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(5): 154-159
[11] WANG Yanqing ZENG Nianchang LIU Bolong.Analysis on Infrared Radiation Temperature Characteristics of Jointed Rock Masses with Different Orientations under Action of Disc Cutters[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(5): 193-199
[12] YANG Tianren HE Fei NING Xiangke ZHANG Xiao TIAN Yanchao.Design and Application of Advanced Geological Prediction System of TBM for Gaoligongshan Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 37-42
[13] LU Song1,2 WANG Xu1,2 LI Cangsong1,2 MENG Lu1,2.Study on Geological Prediction Technology of HSP Method for TBM Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 30-35
[14] ZHANG Yan1, 2 WANG Wei2 DENG Xueqin2.Prediction Model of TBM Advance Rate Based on Relevance Vector Machine[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(3): 108-114
[15] YAN Changbin JIANG Xiaodi.Prediction Model of TBM Net Advance Rate Based on Parameters of Rock Mass and Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 26-33
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY