Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (2) :11-19    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Research and Application of the Safety Coefficient Method for the Middle Rock Pillar of Parallel Tunnels with Small Clear Distance
(1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031; 2. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031)
Download: PDF (1925KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract The middle rock pillar is a key component for the stability control of the surrounding rocks in tunnels with small clear distance, and it is a major challenge in the engineering design and construction process to distinguish the safety of the middle rock pillar. This paper establishes the mechanical analysis model of parallel tunnels with small clear distance under Class IV surrounding rock conditions by analyzing the failure modes of the middle rock pillar under different surrounding rock grades and buried depths, and identifies the location of the fracture surface of the middle rock pillar. This paper divides the upper sliding block of the middle rock pillar into two cases according to the different shapes, derives the calculation formulas of the slip resistance, sliding force and safety coefficient of the upper sliding block of the middle rock pillar according to the principle of slope stability, the assumption of ultimate equilibrium and Protodyakonov′s compressive arch theory, so as to establish the safety coefficient meth? od to evaluate the safety of the middle rock pillar and verify it by introducing numerical simulations. The verified safety coefficient method is then applied to an actual tunnel project to evaluate the safety of the middle rock pillar,which concludes that the critical thickness for the tunnel middle rock pillar failure is 6 m. Middle rock pillar sections with thickness below 6 m are then reinforced using anchor bolts.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
WANG Mingnian1
2 YANG Henghong1
2 ZHANG Yiteng1
2 LIU Kerui1
2 YU Li1
2
KeywordsRailway tunnel   Safety coefficient method   Theoretical analysis   Safety of middle rock pillar   Tunnels with small clear distance     
Abstract: The middle rock pillar is a key component for the stability control of the surrounding rocks in tunnels with small clear distance, and it is a major challenge in the engineering design and construction process to distinguish the safety of the middle rock pillar. This paper establishes the mechanical analysis model of parallel tunnels with small clear distance under Class IV surrounding rock conditions by analyzing the failure modes of the middle rock pillar under different surrounding rock grades and buried depths, and identifies the location of the fracture surface of the middle rock pillar. This paper divides the upper sliding block of the middle rock pillar into two cases according to the different shapes, derives the calculation formulas of the slip resistance, sliding force and safety coefficient of the upper sliding block of the middle rock pillar according to the principle of slope stability, the assumption of ultimate equilibrium and Protodyakonov′s compressive arch theory, so as to establish the safety coefficient meth? od to evaluate the safety of the middle rock pillar and verify it by introducing numerical simulations. The verified safety coefficient method is then applied to an actual tunnel project to evaluate the safety of the middle rock pillar,which concludes that the critical thickness for the tunnel middle rock pillar failure is 6 m. Middle rock pillar sections with thickness below 6 m are then reinforced using anchor bolts.
KeywordsRailway tunnel,   Safety coefficient method,   Theoretical analysis,   Safety of middle rock pillar,   Tunnels with small clear distance     
Cite this article:   
WANG Mingnian1, 2 YANG Henghong1, 2 ZHANG Yiteng1 etc .Research and Application of the Safety Coefficient Method for the Middle Rock Pillar of Parallel Tunnels with Small Clear Distance[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(2): 11-19
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I2/11
 
No references of article
[1] ZHANG Huan1, 2 ZHANG Shishu3 LI Tianbin1, 2 YANG Gang1, 2 LI Shisen1, 2 XIAO Huabo3 CHEN Weidong3.GAPSO-LightGBM-based Intelligent Prediction Method of Surrounding Rock Grade in TBM Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 98-109
[2] KUANG Liang1 SU Wei1 TAO Weiming1 TIAN Siming2 SHEN Yusheng3 LI Xu2 WANG Huiwu1.Study on the Impact Zoning and Fortification Range of Tunnel Structures Crossing Strike-slip Faults[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 45-54
[3] WU Jianfeng1,2 ZHANG Cong1,2 WANG Shuying3 LIANG Yuehua? ZHAI Lihua? YANG Junsheng3.Study on Three-stage Grouting Diffusion Mechanism in Completely Weathered Granite Strata Considering Softening Effect[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 52-61
[4] WEI Ronghua1,2 ZHANG Kangjian1,2 ZHANG Zhiqiang1,2.Optimization Study of Waterproof and Drainage Technology Parameters for Deep-buried Ditches in Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 183-192
[5] YANG Chunshan1 XU Shiyang2 WEI Lixin1 CHEN Junsheng3.Experimental Study on the Mechanical Characteristics of Shield Tunnels under Vertical Jacking[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 210-218
[6] SONG Yuepeng1 FAN Xiaofeng2 LIANG Yu2,3,4 PENG Hongguo5 ZHANG Hanwei5.Deformation Monitoring and Analysis during the Excavation of Deep Circular Shafts in Intercity Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 219-226
[7] ZHOU Xiaojun.On Segmenting Design Method of Prefabricated Assembled Secondary Lining for High-speed Railway Tunnels Based on Cross-section Geometric Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(4): 232-243
[8] XIAO Mingqing1,2 XU Chen1,2 XIE Biting1,2.Research on the Calculation Method of Tunnel Active Support System Based on the Total Safety Factor Method[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(2): 43-51
[9] GAO Shuquan1,2,3 JIANG Liangwen1,2,3 MOU Yuancun1,2,3 LI Xing1,2,3 WANG Shudong1,2 ZHAO Siwei1,2,3.Advanced Geological Forecasting Techniques for Railway Tunnels in the Complex and Treacherous Mountainous Areas of Southwest China[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(2): 52-59
[10] WANG Mingnian1,2 DENG Tao3 YU Li1,2.Development and Prospects of Operation and Disaster Prevention Ventilation Technology in China′s Traffic Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(2): 152-166
[11] ZENG Hongrui1,2 SUN Wenhao3 HE Wei3 GUO Yalin1,2 GUO Chun1,2.Study on the Carbon Emission Prediction Model for Railway Tunnel Construction Based on Machine Learning[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(6): 29-39
[12] ZHU Xingyu LIU Zheng ZHANG Zhiqiang FENG Ying.Study on the Influence Law of Structural Design Parameters of the Railway Tunnel on Secondary Lining Cracks[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(5): 1-10
[13] CHEN Wei1,2 ZHANG Minghong2 ZHANG Ying2 LIN Ling2.Study on Engineering Geological Characteristics of Saline Rock in a Tunnel on China-Laos Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(5): 234-242
[14] DUO Shengjun.Study on Ventilation Technology for Long-distance TBM Construction in Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 222-228
[15] ZHAO Wanqiang1 LU Junfu2 TANG Yin1 ZHENG Changqing1.Study on Risk Level Classification Method and Control Measures for Railway Tunnel Floor Heave[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 178-187
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY