Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (2) :182-191    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study of the Settlement Control of Deformation Joints of Tunnels Passing Closely under the Existing Station
(China Railway 14th Bureau Group Co., Ltd., Jinan 250101)
Download: PDF (5906KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract The newly-built tunnel passing closely under the existing station will inevitably lead to settlement of the existing station, and especially deformation joints are prone to differential settlement. Based on the Suzhoujie Station of Beijing Subway Line 16 passing closely under the existing Line 10, this paper analyzes the overall settlement of the existing station and the differential settlement at deformation joints through a combination of field measurement and numerical simulation. The study results show that installing jacks significantly prevents the settlement of the existing station, after installation of jacks the settlement of the existing station is reduced by about 58%, and the jacking force of the jack shall be controlled between 180-450 t; the impact of construction on the single-deck station structure side at deformation joints is greater than that on the double-deck station structure side, the stress on the socket is gradually increased with the excavation of the lower tunnel, and reduced after installation of jacks, indicating that the jack can effectively reduce the tensile stress of the existing station and maintain the safety of the existing station; with the action of the jacking force of jacks, the settlement curve of the existing station presents a stepwise change at the jack installation points, while the upper ground surface settlement is relatively uniform.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LIANG Erbin
KeywordsMined subway station   Approaching construction   Underpinning   Deformation joint   Ground surface set? tlement   Jack     
Abstract: The newly-built tunnel passing closely under the existing station will inevitably lead to settlement of the existing station, and especially deformation joints are prone to differential settlement. Based on the Suzhoujie Station of Beijing Subway Line 16 passing closely under the existing Line 10, this paper analyzes the overall settlement of the existing station and the differential settlement at deformation joints through a combination of field measurement and numerical simulation. The study results show that installing jacks significantly prevents the settlement of the existing station, after installation of jacks the settlement of the existing station is reduced by about 58%, and the jacking force of the jack shall be controlled between 180-450 t; the impact of construction on the single-deck station structure side at deformation joints is greater than that on the double-deck station structure side, the stress on the socket is gradually increased with the excavation of the lower tunnel, and reduced after installation of jacks, indicating that the jack can effectively reduce the tensile stress of the existing station and maintain the safety of the existing station; with the action of the jacking force of jacks, the settlement curve of the existing station presents a stepwise change at the jack installation points, while the upper ground surface settlement is relatively uniform.
KeywordsMined subway station,   Approaching construction,   Underpinning,   Deformation joint,   Ground surface set? tlement,   Jack     
Cite this article:   
LIANG Erbin .Study of the Settlement Control of Deformation Joints of Tunnels Passing Closely under the Existing Station[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(2): 182-191
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I2/182
 
No references of article
[1] SONG Zhanping1,2,3 LI Xueli1 ZHANG Yuwei1,2,3 ZHONG Shiming1 SHI Wei4.Review and Prospect of the Mining Construction Methods for Subway Stations in China[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 1-15
[2] ZHANG Xinyang1,2 SHEN Yusheng1,2 CHANG Mingyu1,2 LIU Tong1,2 SUN Tianshe3, 4 HU Shuai3, 4.Study on the Control Law of Surface Deformation in Shield Tunnels in Mudstone Strata with the Clay Shock Construction Method[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 283-290
[3] WU Zihan1 LU Qingrui1 XIE Binbin1,2 CHEN Shijun1 DAI Tao1 CHEN Liming1.Influence of Shield Tunnel Backfill Grouting with Red Mud-fly Ash Geopolymer on Surface Settlement[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(1): 285-
[4] GE Zhaoguo.Study on Impact Zoning Method and Zoning Control Technique for Construction of Large-diameter Shield Tunnel Adjacent to Viaduct Pile Foundation Group[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(3): 276-289
[5] ZHENG Shuang1,2 LIU Chao3 ZHU Delin3 LIU Hai3 JIA Xinjuan1.A Study on Disturbance Pattern of Asymmetric Synchronous Grouting on Ground during Large Diameter Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 168-177
[6] CUI Guangyao1 MA Jianfei2 NING Maoquan3,4 TANG Zaixing3,4 LIU Shunshui3,4 TIAN Yuhang1.A Study on Optimization of Reinforcement Scheme for Adjacent Construction of Super-large Rectangular Pipe Jacking Shield Tunnel in Soft Ground[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 178-184
[7] ZHANG Lili1 SHAN Lin1 GUO Fei1 CAI Zhen1 HAN Ruilin1 ZHANG Xu2,3,4 WANG Zhiguang2 XU Youjun2,3,4.Study on Safety Control of Adjacent Construction of Overlapped Shield Tunnel with a Small Radius of Curve[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(3): 253-264
[8] MA Qianying YE Jiachao JIANG Xiaohui.Study on Ground Settlement Prediction in Shield Tunnel Construction Considering Soil Arching Effect[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(6): 148-154
[9] ZHOU Wendi1,2 LIANG Qingguo1,2 ZHANG Jindong3.Analysis of the Deformation and Structural Stress of a Metro Station Constructed by Pile-Beam-Arch Method[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(6): 121-128
[10] QIU Wenge WAN Shifu GAO Ganggang ZHAO Hailin QI Xingxin.tudy on the Control Measures against Ground Settlement Induced by Shield Tunnel Construction underneath Railway Throat in Sandy Cobble Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(5): 37-45
[11] WANG Zhijie1 LI Jinyi1 JIANG Xinzheng1 LI Zhen1 ZENG Qing2 WANG Ning2.Research on the Impact Zoning and Construction Countermeasures for Bilateral Adjacent Tunnels with Shallow Depth and Unsymmetrical Load[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(4): 1-11
[12] ZHANG Zilong1 JIANG Annan1 YU Hai2 WANG Feng2.Analysis of the Mechanical Response in the Construction of Large-Span Mined Metro Stations by the Arch-Cover Method[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(3): 139-146
[13] ZHU Caihui1 LAN Kaijiang1 DUAN Yu1 HE Hong2 DENG Guohua1,2.Study on the Reasonable Excavation Option of "Tunnel First before Shaft" for an Running Tunnel of Xi′an Metro Line 9[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(3): 205-215
[14] JIANG Yongtao1 WANG Mingnian1 ZHANG Yiteng1 YU Li1 JIANG Fan2 XIAO Zerong3.Prediction Method for Surface Settlement in Tunnel Construction with Pipe Curtain Support[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 82-90
[15] LI Qiang1 GAN Penglu2.On Cutter Wearing Control Technology of the Shield Passing through Mixed Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(1): 168-174
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY