Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2011, Vol. 48 Issue (2) :94-98    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Construction Techniques of West Qinling Tunnel to Traverse F54 Fault
(Headquarters of Lanzhou-Chongqing Railway, China Railway No.18 Construction Bureau Co., Ltd., Wudu  746041)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract The geological structure of surrounding rocks of super-long West Qinling tunnel is complex and the tunnel is located in the area of high ground stresses with developed faults. The paper introduces the geological characteristics and regulations of stress variation of the fault  based on the tunnel driving through F54 fault, describes the construction method and support parameters of the project.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
GAO Wen-Shan
Keywords Super-long tunnel   Fractured zone   Construction technique     
Abstract: The geological structure of surrounding rocks of super-long West Qinling tunnel is complex and the tunnel is located in the area of high ground stresses with developed faults. The paper introduces the geological characteristics and regulations of stress variation of the fault  based on the tunnel driving through F54 fault, describes the construction method and support parameters of the project.
Keywords Super-long tunnel,   Fractured zone,   Construction technique     
published: 2010-03-10
Cite this article:   
GAO Wen-Shan .Construction Techniques of West Qinling Tunnel to Traverse F54 Fault[J]  MODERN TUNNELLING TECHNOLOGY, 2011,V48(2): 94-98
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2011/V48/I2/94
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] HAN Yuxuan1 LENG Xiqiao2,3 YAN Jinxiu4 ZHANG Rui5.Construction Technology for the Shaft of Extra-long Micangshan Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 133-138
[3] KONG Qingxiang ZHAI Renfeng.Some Issues Concerning Construction of High Speed Railway Tunnels and Corresponding Countermeasures:A Case Study of Beitaizi Tunnel on the Beijing-Shengyang Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 166-171
[4] WANG Bo-1, GUO Xin-Xin-1, HE Chuan-1, WU De-Xing-2.[J]. MODERN TUNNELLING TECHNOLOGY, 2018,55(5): 1-10
[5] ZHOU Baosheng.Optimized CRD Construction Techniques for a Super-Shallow Bored Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2018,55(4): 186-190
[6] AN Yonglin1 OUYANG Pengbo1 PENG Limin2 WU Bo3 HU Wenxuan1.Construction Techniques and Safety Analysis for a Deep Vertical Shaft and Vertical Shaft Shifting to Main Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2018,55(2): 164-173
[7] Einar Broch.Tunnels and Underground Works for Hydropower Projects[J]. MODERN TUNNELLING TECHNOLOGY, 2017,54(5): 1-12
[8] .Construction Techniques for a Shallow-Buried Tunnel with a Large Section in Hard Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2017,54(3): 190-194
[9] SONG Zhirong.Raise Construction Techniques for Inclined Ventilation Shaft of the Long, Deep- Buried Erlangshan Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2017,54(2): 202-206
[10] WU Quan-Li- 1, 2 Wang-Meng-Shu- 1 Zhu- Lei- 3 Dong-Xin-Ping- 3 Sun-Zheng-Yang- 4.Construction Technology for the Shield Tunnel Passing under the Existing Metro Line at the Launching End[J]. MODERN TUNNELLING TECHNOLOGY, 2016,53(4): 134-142
[11] ZHANG Yintao.Construction Techniques for and Cost Analysis of Secant Piles for the Pre-Reinforcement of Tunnels in Sand Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2016,53(3): 195-201
[12] .Key Construction Techniques for Urban Underwater Bored Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2016,53(2): 9-16
[13] Tuo Yongfei, Guo Xiaohong.General Design and Key Technologies of the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 1-6
[14] Lin Xin1, Shu Heng1, Zhang Yaguo2, Yang Linsong1, Li Jin1, Guo Xiaohong1.Study of the Longitudial Profile Optimization of Large-Diameter Shield Tunnels in Mixed Ground with Very High Water Pressure[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 7-14
[15] Yao Zhanhu1, Yang Zhao2, Tian Yi1, Hu Huitao1.Key Construction Technology for the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 15-23
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY