Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2012, Vol. 49 Issue (4) :152-155    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Construction Technique for a Break-Through Section of a Tunnel in Soft Rock
China Railway 16th Bureau Group Co., Ltd
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Using the construction of the Yangjiawan tunnel on the Lanzhou-Chongqing railway as an example, this paper analyzes the degree and cause of deformation of surrounding rock and support during and after breaking through. By installing a primary support at both sides of the break-through section and using pre-support at the non-break through section, support deformation induced by breaking through was controlled and excavation stability and construction safety were guaranteed.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
Keywords:   
Abstract: Using the construction of the Yangjiawan tunnel on the Lanzhou-Chongqing railway as an example, this paper analyzes the degree and cause of deformation of surrounding rock and support during and after breaking through. By installing a primary support at both sides of the break-through section and using pre-support at the non-break through section, support deformation induced by breaking through was controlled and excavation stability and construction safety were guaranteed.
Keywords:   
Cite this article:   
.Construction Technique for a Break-Through Section of a Tunnel in Soft Rock[J]  MODERN TUNNELLING TECHNOLOGY, 2012,V49(4): 152-155
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2012/V49/I4/152
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] HAN Yuxuan1 LENG Xiqiao2,3 YAN Jinxiu4 ZHANG Rui5.Construction Technology for the Shaft of Extra-long Micangshan Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 133-138
[3] KONG Qingxiang ZHAI Renfeng.Some Issues Concerning Construction of High Speed Railway Tunnels and Corresponding Countermeasures:A Case Study of Beitaizi Tunnel on the Beijing-Shengyang Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 166-171
[4] WANG Bo-1, GUO Xin-Xin-1, HE Chuan-1, WU De-Xing-2.[J]. MODERN TUNNELLING TECHNOLOGY, 2018,55(5): 1-10
[5] ZHOU Baosheng.Optimized CRD Construction Techniques for a Super-Shallow Bored Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2018,55(4): 186-190
[6] AN Yonglin1 OUYANG Pengbo1 PENG Limin2 WU Bo3 HU Wenxuan1.Construction Techniques and Safety Analysis for a Deep Vertical Shaft and Vertical Shaft Shifting to Main Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2018,55(2): 164-173
[7] Einar Broch.Tunnels and Underground Works for Hydropower Projects[J]. MODERN TUNNELLING TECHNOLOGY, 2017,54(5): 1-12
[8] .Construction Techniques for a Shallow-Buried Tunnel with a Large Section in Hard Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2017,54(3): 190-194
[9] SONG Zhirong.Raise Construction Techniques for Inclined Ventilation Shaft of the Long, Deep- Buried Erlangshan Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2017,54(2): 202-206
[10] WU Quan-Li- 1, 2 Wang-Meng-Shu- 1 Zhu- Lei- 3 Dong-Xin-Ping- 3 Sun-Zheng-Yang- 4.Construction Technology for the Shield Tunnel Passing under the Existing Metro Line at the Launching End[J]. MODERN TUNNELLING TECHNOLOGY, 2016,53(4): 134-142
[11] ZHANG Yintao.Construction Techniques for and Cost Analysis of Secant Piles for the Pre-Reinforcement of Tunnels in Sand Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2016,53(3): 195-201
[12] .Key Construction Techniques for Urban Underwater Bored Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2016,53(2): 9-16
[13] Tuo Yongfei, Guo Xiaohong.General Design and Key Technologies of the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 1-6
[14] Lin Xin1, Shu Heng1, Zhang Yaguo2, Yang Linsong1, Li Jin1, Guo Xiaohong1.Study of the Longitudial Profile Optimization of Large-Diameter Shield Tunnels in Mixed Ground with Very High Water Pressure[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 7-14
[15] Yao Zhanhu1, Yang Zhao2, Tian Yi1, Hu Huitao1.Key Construction Technology for the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 15-23
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY