[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2023, Vol. 60 Issue (1) :219-224    DOI:
规划设计与施工 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
深埋富水黄土隧道地表深孔袖阀管注浆加固机理及效果分析
(1.中国国家铁路集团有限公司工程管理中心,北京 100844;2.兰州大学,兰州 730000;3.中铁第一勘察设计院集团有限公司,西安 710043)
Mechanism and Effect Analysis of Surface Deep-hole Sleeve Valve Pipe Grouting Reinforcement in Deep-buried Water-bearing Loess Tunnel
(1. Engineering Management Center of China State Railway Group Co., Ltd., Beijing 100844; 2. Lanzhou University, Lanzhou 730000;3. China Railway First Survey and Design Institute Group Co., Ltd., Xi′an 710043)
Download: PDF (2760KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 黄土具有“强度低、变形量大、自承能力小、工程性质差”的特点,且对水特别敏感,一旦遇水,强度明显降低,工程性质急剧恶化。因此,富水黄土隧道的施工难度极大、安全风险极高。银川至西安高铁上阁村隧道穿越富水黄土地层,埋深102 m。施工中,通过降水试验无法取得明显的降水效果,同时隧道围岩变形大、进度缓慢。鉴于此,开展了地表深孔刚性袖阀管注浆试验研究。研究结果表明:(1)地表深孔袖阀管注浆可以有效加固地层,提高其自稳能力。加固机理主要表现为浆液对竖向原生节理的填充阻水作用、浆液结石体的空间骨架作用;(2)注浆后隧道拱顶累计沉降量明显减小,变形速率降低,仰拱闭合时间提前,隧道开挖进度可达到60~80 m/月。与未注浆工况相比,施工进度提高了3倍以上;(3)通过注浆,隧道基底黄土地层承载能力可提高3倍以上,从而可保证高铁隧道的长期运营安全。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
张民庆 1 张虎元 2 谢君泰 3
关键词深埋隧道   富水黄土   地表深孔袖阀管注浆   注浆机理   注浆效果     
Abstract: Loess is characterized by "low strength, large deformation, small self-supporting capacity and poor engi? neering properties", and is particularly sensitive to water. Once it meets water, the strength will be significantly reduced, and the engineering properties will deteriorate sharply. Therefore, the construction of the water-bearing loess tunnel is extremely difficult and the safety risk is extremely high. The Shangge Village tunnel on Yinchuan-Xi ′ an High-speed Railway passes through the water-bearing loess stratum, with a buried depth of 102 m. During the conStruction, no obvious dewatering effect can be achieved through the dewatering test, and the surrounding rock of the tunnel is deformed greatly and the progress is slow. In view of this, an experimental study on grouting of surface deep-hole rigid sleeve valve pipe is carried out. The results show that: (1) the grouting of the surface deep-hole sleeve valve pipe can effectively strengthen the stratum and improve its self-stability. The reinforcement mechanism is mainly the filling and water-blocking effect of grouting on vertical primary joints and the spatial skeleton effect of grout stones. (2) After grouting, the accumulated settlement of the tunnel vault is obviously reduced, the deformation rate is reduced, the invert closure time is advanced, and the tunnel excavation progress can reach 60 ~ 80 m/month.The construction schedule has been improved by more than three times compared to that of the ungrouted case. (3)Through grouting, the bearing capacity of the loess stratum at the tunnel base can be increased by more than 3times, thus ensuring the long-term operation safety of high-speed railway tunnels.
KeywordsDeep-buried tunnel,   Water-bearing loess,   Surface deep-hole sleeve valve pipe grouting,   Grouting mechanism,   Grouting effect     
基金资助:中国国家铁路集团有限公司科技研究开发计划课题(P2019G038)
作者简介: 张民庆(1970-),男,正高级工程师,主要从事隧道及地下工程监控量测、注浆加固、注浆堵水等方面的研究和管理工作,E-mail: zskzmq888@163.com.
引用本文:   
张民庆 1 张虎元 2 谢君泰 3 .深埋富水黄土隧道地表深孔袖阀管注浆加固机理及效果分析[J]  现代隧道技术, 2023,V60(1): 219-224
ZHANG Minqing1 ZHANG Huyuan2 XIE Juntai3 .Mechanism and Effect Analysis of Surface Deep-hole Sleeve Valve Pipe Grouting Reinforcement in Deep-buried Water-bearing Loess Tunnel[J]  MODERN TUNNELLING TECHNOLOGY, 2023,V60(1): 219-224
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2023/V60/I1/219
 
没有本文参考文献
[1] 任 洋 1,2 李天斌 1,2 张佳鑫 3 望刚炜 1,2.复杂地质条件深埋特长隧道地应力场智能反演研究[J]. 现代隧道技术, 2023,60(2): 47-53
[2] 罗 春 1 张志强 1 林迪睿 1 唐泽林 2.特长深埋隧道合修与分修对岩爆的影响研究[J]. 现代隧道技术, 2022,59(2): 28-37
[3] 常 刚 1,2 牌立芳 3,4 庞伟军 1,4 吴红刚 1,2,4 剡理祯 1.深埋硬岩组合隧道围岩开挖变形影响研究[J]. 现代隧道技术, 2021,58(5): 73-77
[4] 李 明 严松宏 潘春阳 张旭斌.富水大断面黄土隧道开挖流固耦合效应分析[J]. 现代隧道技术, 2019,56(4): 81-88
[5] 邱陈瑜 1,4 郑颖人 1 张艳涛 2 谭万鹏 3 赵尚毅 1.岩质隧道深浅埋划分方法及判别标准探讨[J]. 现代隧道技术, 2019,56(1): 14-21
[6] 于 洋 洪 鹏 朱 陈 赵秀绍.深埋硬岩隧洞围岩变形量分形结构研究[J]. 现代隧道技术, 2019,56(1): 124-129
[7] 白明洲 1,2 师 海 1 易迪青 3 张云龙 1 聂一聪 1,2.基于复变函数理论的深埋隧道岩爆特性分析研究[J]. 现代隧道技术, 2018,55(1): 71-77
[8] 宋志荣.二郎山特长深埋隧道通风斜井反井法施工技术[J]. 现代隧道技术, 2017,54(2): 202-206
[9] 董淑棉1, 郭炎伟2.注浆止水技术在热力工程竖井施工中的应用[J]. 现代隧道技术, 2014,51(2): 182-186
[10] 周鑫.厦深铁路梁山隧道L7深埋富水软弱带超前预加固体系支护机理分析[J]. 现代隧道技术, 2013,50(4): 138-145
[11] 余莉1 陈建平1 张磊2.修正Q值围岩分级方法在碳酸盐地区大断裂超深埋特长隧道的应用研究[J]. 现代隧道技术, 2013,50(3): 32-39
[12] 刘伟1 周斌2 赵伟1 陈玉玲1.CASMT法在岩溶区深埋隧道探测中的应用——以汕昆高速公路大湾隧道为例[J]. 现代隧道技术, 2013,50(1): 150-153
[13] 国际隧协第17工作组.长大深埋隧道(连载三)[J]. 现代隧道技术, 2012,49(6): 4-12
[14] 李定越,肖凯刚,周国辉,吴志刚.双线铁路隧道IV级围岩深埋地段二次衬砌采用素混凝土结构的方案论证[J]. 现代隧道技术, 2012,49(4): 76-82
[15] 国际隧道协会第17工作组.长大深埋隧道(连载一)[J]. 现代隧道技术, 2012,49(3): 1-8
Copyright 2010 by 现代隧道技术