[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2022, Vol. 59 Issue (1) :42-54    DOI:
复杂条件隧道修建技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
极端复杂地质条件下TBM隧道施工关键技术研究及应用
(1.中铁隧道局集团有限公司,广州 511458;2.盾构及掘进技术国家重点实验室,郑州 450001;3.中铁隧道股份有限公司,郑州 450001)
Research and Application of Key Construction Technologies for TBM-driven Tunnels under Extreme Complex Geological Conditions
(1. China Railway Tunnel Group Co., Ltd.,Guangzhou 511458 ; 2. State Key Laboratory of Shield Machine and Boring Technology,Zhengzhou 450001; 3. China Railway Tunnel Stock Co., Ltd., Zhengzhou 450001)
Download: PDF (3129KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 大瑞铁路高黎贡山隧道、引汉济渭秦岭隧洞、滇中引水香炉山隧洞等工程的相继开工建设,使富水破碎极软地层带来的TBM卡机、高地应力极硬岩地层带来的岩爆等TBM施工问题日益凸显。文章首先对比阐述了国内TBM隧道工程建设过程中常遇到的软弱破碎、极硬花岗岩等典型不良地质及其对TBM掘进所带来的影响,在总结分析辽西北供水、引松供水、引洮供水等工程建设过程中出现的隧道局部塌方、TBM卡机等案例及其影响因素的基础上,以极端复杂地质条件TBM掘进关键技术为对象进行了系统研究论述,结果表明:(1)超前地质预报技术是TBM施工应对极端复杂地质的重要手段,但目前尚无法对前方中远距离地质状况进行准确量化预测;基于微震监测分析结果,根据可能发生的轻微、中等、强烈等不同等级的岩爆,制定对应处置措施;节理发育、炭质板岩、断层破碎带等不同软弱破碎地层,应采取针对性的防卡机措施,同时可根据不良地质段的长度来选择合适的脱困方案;(2)TBM推力、推进速度、刀盘转速及扭矩等掘进参数的异常波动,是表征掌子面前方地质条件状态的重要指标,TBM掘进前,根据前期预判的全断面硬岩、软弱破碎等围岩条件,分别选择合适的掘进参数;TBM掘进过程中,应基于掘进参数异常变化,纠正地质条件预判并采取对应的调控措施,进而确保TBM处于最佳掘进状态;(3)针对既有TBM难以适应现有地质条件的情况,以引洮供水隧洞、引红济石隧洞、引汉济渭隧洞等工程为例,对TBM改造技术进行了分析论述。最后,针对极端复杂地质条件下的TBM隧道工程建设新问题及其应对措施进行了展望与探讨。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
冯欢欢 1
2 洪开荣 1
2 杨延栋 2 杨露伟 1 司景钊 1 游金虎 3
关键词隧道   TBM施工   断层   软弱破碎   岩爆   卡机   TBM改造     
Abstract: With successive construction commencement of the Gaoligongshan Tunnel of the Dali-Ruili Railway, the Qinling Tunnel of the Hanjiang-to-Weihe Water Diversion Project, and the Xianglushan Tunnel of the Central Yunnan Water Diversion Project, various TBM construction problems have become increasingly prominent, such as TBM jamming caused by water-rich, broken and extremely soft strata, and rockburst caused by extremely hard rock strata with high in-situ stress. Firstly, this paper compares and elaborates on the typical adverse geological conditions such as broken and soft rock, and extremely hard granite commonly encountered during the construction of TBM tunnels in China and their impacts on TBM boring. On the basis of summarizing and analyzing the tunnel collapse and TBM jamming cases, and their influencing factors during the construction of various projects such as the Liaoning northwest water supply project, the songhua river water diversion project, and the tao river water supply project, this paper conducts a systematic study on the key TBM boring technologies under extreme complex geological conditions, and the results show that: (1) the advance geological prediction technology is an important tool for TBM construction to cope with extreme complex geological conditions, but presently, it is not yet possible to accurately quantify and predict the geological conditions in the medium and long distance ahead of the tunnel face.Based on the analysis results of micro-seismic monitoring, corresponding countermeasures may be taken according to potential different rockburst levels such as minor, moderate and intense rockburst levels. For different soft and broken strata such as developed joints, carbonaceous slates, fault and broken zones, etc., targeted measures should be taken to prevent TBM jamming, while a suitable TBM machine release scheme can be chosen according to the length of the poor geological section. (2) Abnormal fluctuations of TBM boring parameters such as thrust, advancing speed, cutterhead rotation speed and torque are important indicators to characterize the geological conditions in front of the tunnel face. Before the TBM excavation, appropriate TBM boring parameters should be selected respectively according to the pre-estimated surrounding rock conditions such as full-face hard rocks or soft and fractured rocks. During the TBM boring process, the predicted geological conditions should be corrected timely, and corresponding control measures should be adjusted based on the abnormal changes of the boring parameters, thus ensuring that the TBM is in the best boring condition. (3) In view of the fact that it is difficult for the existing TBMs to adapt to the existing geological conditions, this paper carries out an analysis and discussion on the TBM modification technologies with the tunnels in the Tao river diversion and water supply project, the Hongyan river-to-shitou river water diversion project and the Hanjiang-to-weihe water diversion project as examples. Finally, it discusses the new problems that could arise in TBM tunnel construction under extreme complex geological conditions and future prospects of corresponding countermeasures.
KeywordsTunnel,   TBM construction,   Fault,   Weak and broken rock,   Rockburst,   Jamming,   TBM modification     
收稿日期: 2021-07-10;
基金资助:国家重点研发计划(2020YFB1712100);中国铁路总公司科技研究开发计划课题(2016G004-A).
作者简介: 冯欢欢(1987-),男,硕士,高级工程师,主要从事隧道及地下工程技术研究与管理工作,E-mail:skl_fhh@163.com.
引用本文:   
冯欢欢 1, 2 洪开荣 1, 2 杨延栋 2 杨露伟 1 司景钊 1 游金虎 3 .极端复杂地质条件下TBM隧道施工关键技术研究及应用[J]  现代隧道技术, 2022,V59(1): 42-54
FENG Huanhuan1, 2 HONG Kairong1, 2 YANG Yandong2 YANG Luwei1 SI Jingzhao1 YOU Jinhu3 .Research and Application of Key Construction Technologies for TBM-driven Tunnels under Extreme Complex Geological Conditions[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(1): 42-54
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2022/V59/I1/42
 
没有本文参考文献
[1] 李瑞俊1 宋宗莹2 李 琛1 王文斌2 任育珍3,4 蔡建华3,4 张家旭3,4.重载铁路梁家山隧道病害多源融合诊断与处置对策[J]. 现代隧道技术, 2025,62(4): 301-308
[2] 郭永军1 李 超2 郑建国3 于永堂4 朱才辉5.地面堆载对西安黄土地层中既有盾构管片影响研究[J]. 现代隧道技术, 2025,62(4): 61-72
[3] 冯冀蒙1,2 宋佳黛1,2 王圣涛3 李艺飞1,2 张俊儒1,2 王好明4 汪 波1,2.填海地层特大断面隧道超长管棚变形控制 效能研究[J]. 现代隧道技术, 2025,62(4): 155-162
[4] 杨 颖1 倪 凯1 葛 林2 张明飞3 王晓睿4.弱光条件下基于改进Unet模型的隧道渗水病害图像分割[J]. 现代隧道技术, 2025,62(4): 100-110
[5] 苏开春1 付 锐2,3 曾弘锐2,3 冷希乔4 郭 春2,3.基于DBO-A-LSTM的公路隧道短时多步交通量预测[J]. 现代隧道技术, 2025,62(4): 111-121
[6] 刘 杨1 邵泽楷2 田浩帆2 张汝溪1 郑 波3 王峥峥2.高速公路隧道下穿房柱式煤矿采空区爆破施工煤柱 损伤规律研究[J]. 现代隧道技术, 2025,62(4): 132-144
[7] 周弋力1 封 坤1 郭文琦1 张亮亮2 李春林3.超大直径盾构隧道管片纵缝抗弯力学行为与损伤过程研究[J]. 现代隧道技术, 2025,62(4): 163-173
[8] 易 丹1 薛皓匀2 杨绍毅2 喻 波1 封 坤2 林 刚1.盾构隧道管片结构螺栓失效对横向地震响应的影响分析[J]. 现代隧道技术, 2025,62(4): 174-181
[9] 钟武霖1 韩兴博1 叶 飞1 王 涵1 曹校勇2 奚魏征2.隧道竖井钢波纹板支护风阻及优化设计研究[J]. 现代隧道技术, 2025,62(4): 197-207
[10] 贾永刚1 郝子晗1 鲁卫东1 吴 帆1 阳卫卫2.钢纤维混凝土管片不同接头型式力学性能研究[J]. 现代隧道技术, 2025,62(4): 182-196
[11] 谭鑫雨1 韦 猛1,2 兰灵申1 尚 强1 张海涛1.盾构刀盘结泥饼土体降黏附试验与机理研究[J]. 现代隧道技术, 2025,62(4): 219-229
[12] 刘力英1 魏立新1 喻志远2 杨旭东3 叶婷婷1.如意坊沉管隧道建造关键技术[J]. 现代隧道技术, 2025,62(4): 259-272
[13] 刘朋飞1,2 曾德星2 王 霄3 杨 钊2 李 钰2.盾构泥饼分解剂作用效果评价试验及应用研究[J]. 现代隧道技术, 2025,62(4): 230-237
[14] 罗 龙1 朱开宬2 韩瑀萱3 蔡 东4 刘哲奇5 王 俊6.超大断面隧道施工工法优化研究 ——以天邛高速公路梨花山隧道工程为例[J]. 现代隧道技术, 2025,62(4): 273-282
[15] 巴 金1 唐 刚2.白云质灰岩地层岩溶隧道支护结构受力特征及控制技术[J]. 现代隧道技术, 2025,62(4): 283-290
Copyright 2010 by 现代隧道技术