[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2022, Vol. 59 Issue (1) :42-54    DOI:
复杂条件隧道修建技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
极端复杂地质条件下TBM隧道施工关键技术研究及应用
(1.中铁隧道局集团有限公司,广州 511458;2.盾构及掘进技术国家重点实验室,郑州 450001;3.中铁隧道股份有限公司,郑州 450001)
Research and Application of Key Construction Technologies for TBM-driven Tunnels under Extreme Complex Geological Conditions
(1. China Railway Tunnel Group Co., Ltd.,Guangzhou 511458 ; 2. State Key Laboratory of Shield Machine and Boring Technology,Zhengzhou 450001; 3. China Railway Tunnel Stock Co., Ltd., Zhengzhou 450001)
Download: PDF (3129KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 大瑞铁路高黎贡山隧道、引汉济渭秦岭隧洞、滇中引水香炉山隧洞等工程的相继开工建设,使富水破碎极软地层带来的TBM卡机、高地应力极硬岩地层带来的岩爆等TBM施工问题日益凸显。文章首先对比阐述了国内TBM隧道工程建设过程中常遇到的软弱破碎、极硬花岗岩等典型不良地质及其对TBM掘进所带来的影响,在总结分析辽西北供水、引松供水、引洮供水等工程建设过程中出现的隧道局部塌方、TBM卡机等案例及其影响因素的基础上,以极端复杂地质条件TBM掘进关键技术为对象进行了系统研究论述,结果表明:(1)超前地质预报技术是TBM施工应对极端复杂地质的重要手段,但目前尚无法对前方中远距离地质状况进行准确量化预测;基于微震监测分析结果,根据可能发生的轻微、中等、强烈等不同等级的岩爆,制定对应处置措施;节理发育、炭质板岩、断层破碎带等不同软弱破碎地层,应采取针对性的防卡机措施,同时可根据不良地质段的长度来选择合适的脱困方案;(2)TBM推力、推进速度、刀盘转速及扭矩等掘进参数的异常波动,是表征掌子面前方地质条件状态的重要指标,TBM掘进前,根据前期预判的全断面硬岩、软弱破碎等围岩条件,分别选择合适的掘进参数;TBM掘进过程中,应基于掘进参数异常变化,纠正地质条件预判并采取对应的调控措施,进而确保TBM处于最佳掘进状态;(3)针对既有TBM难以适应现有地质条件的情况,以引洮供水隧洞、引红济石隧洞、引汉济渭隧洞等工程为例,对TBM改造技术进行了分析论述。最后,针对极端复杂地质条件下的TBM隧道工程建设新问题及其应对措施进行了展望与探讨。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
冯欢欢 1
2 洪开荣 1
2 杨延栋 2 杨露伟 1 司景钊 1 游金虎 3
关键词隧道   TBM施工   断层   软弱破碎   岩爆   卡机   TBM改造     
Abstract: With successive construction commencement of the Gaoligongshan Tunnel of the Dali-Ruili Railway, the Qinling Tunnel of the Hanjiang-to-Weihe Water Diversion Project, and the Xianglushan Tunnel of the Central Yunnan Water Diversion Project, various TBM construction problems have become increasingly prominent, such as TBM jamming caused by water-rich, broken and extremely soft strata, and rockburst caused by extremely hard rock strata with high in-situ stress. Firstly, this paper compares and elaborates on the typical adverse geological conditions such as broken and soft rock, and extremely hard granite commonly encountered during the construction of TBM tunnels in China and their impacts on TBM boring. On the basis of summarizing and analyzing the tunnel collapse and TBM jamming cases, and their influencing factors during the construction of various projects such as the Liaoning northwest water supply project, the songhua river water diversion project, and the tao river water supply project, this paper conducts a systematic study on the key TBM boring technologies under extreme complex geological conditions, and the results show that: (1) the advance geological prediction technology is an important tool for TBM construction to cope with extreme complex geological conditions, but presently, it is not yet possible to accurately quantify and predict the geological conditions in the medium and long distance ahead of the tunnel face.Based on the analysis results of micro-seismic monitoring, corresponding countermeasures may be taken according to potential different rockburst levels such as minor, moderate and intense rockburst levels. For different soft and broken strata such as developed joints, carbonaceous slates, fault and broken zones, etc., targeted measures should be taken to prevent TBM jamming, while a suitable TBM machine release scheme can be chosen according to the length of the poor geological section. (2) Abnormal fluctuations of TBM boring parameters such as thrust, advancing speed, cutterhead rotation speed and torque are important indicators to characterize the geological conditions in front of the tunnel face. Before the TBM excavation, appropriate TBM boring parameters should be selected respectively according to the pre-estimated surrounding rock conditions such as full-face hard rocks or soft and fractured rocks. During the TBM boring process, the predicted geological conditions should be corrected timely, and corresponding control measures should be adjusted based on the abnormal changes of the boring parameters, thus ensuring that the TBM is in the best boring condition. (3) In view of the fact that it is difficult for the existing TBMs to adapt to the existing geological conditions, this paper carries out an analysis and discussion on the TBM modification technologies with the tunnels in the Tao river diversion and water supply project, the Hongyan river-to-shitou river water diversion project and the Hanjiang-to-weihe water diversion project as examples. Finally, it discusses the new problems that could arise in TBM tunnel construction under extreme complex geological conditions and future prospects of corresponding countermeasures.
KeywordsTunnel,   TBM construction,   Fault,   Weak and broken rock,   Rockburst,   Jamming,   TBM modification     
收稿日期: 2021-07-10;
基金资助:国家重点研发计划(2020YFB1712100);中国铁路总公司科技研究开发计划课题(2016G004-A).
作者简介: 冯欢欢(1987-),男,硕士,高级工程师,主要从事隧道及地下工程技术研究与管理工作,E-mail:skl_fhh@163.com.
引用本文:   
冯欢欢 1, 2 洪开荣 1, 2 杨延栋 2 杨露伟 1 司景钊 1 游金虎 3 .极端复杂地质条件下TBM隧道施工关键技术研究及应用[J]  现代隧道技术, 2022,V59(1): 42-54
FENG Huanhuan1, 2 HONG Kairong1, 2 YANG Yandong2 YANG Luwei1 SI Jingzhao1 YOU Jinhu3 .Research and Application of Key Construction Technologies for TBM-driven Tunnels under Extreme Complex Geological Conditions[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(1): 42-54
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2022/V59/I1/42
 
没有本文参考文献
[1] 张民庆 1 贾大鹏 1 王水善 2 高存成 3.铁路隧道衬砌施工自动浇筑振捣新技术[J]. 现代隧道技术, 2022,59(1): 29-34
[2] 陈绍华.秦岭马白山隧道新型紧急救援站结构型式研究[J]. 现代隧道技术, 2022,59(1): 35-41
[3] 郑颖人 1 阿比尔的 2.岩质隧道围岩稳定分析与分级研讨[J]. 现代隧道技术, 2022,59(1): 1-13
[4] 陈湘生 1,2 喻益亮 1,2 包小华 1,2 崔宏志 1,2 夏长青 1,2 周海洋 1,2 朱 旻 1,2.基于韧性理论的盾构隧道智能建造[J]. 现代隧道技术, 2022,59(1): 14-28
[5] 王帅帅 1 毛锦波 2 张斌斌 2 李亚隆 2 赵红刚 2.乌尉高速天山胜利隧道总体施工技术方案[J]. 现代隧道技术, 2022,59(1): 55-68
[6] 张 纯 周宇轩 李登鹏.具有无序排列管片环结构的地铁盾构隧道数字模型智能重建[J]. 现代隧道技术, 2022,59(1): 80-86
[7] 包逸帆 1,2 王明年 1,2 秦鹏程 1,2 陈湛文 1,2 韩常领 3 严 涛 1,2 陈劲宇 1,4.遮阳棚对隧道进出口明暗适应的影响规律研究[J]. 现代隧道技术, 2022,59(1): 111-117
[8] 孙 意.成贵铁路四川红层段瓦斯特征分析及勘察阶段划分隧道瓦斯工区类别的建议[J]. 现代隧道技术, 2022,59(1): 195-199
[9] 闵世平 1 彭 东 2 何跃川 1 张 涛 3.隧道三维激光扫描测算一体化技术方案与实践[J]. 现代隧道技术, 2022,59(1): 87-94
[10] 蒋雅君 1 何 斌 1 赵菊梅 1 刘基泰 1 王虎群 2,3.隧道喷膜防水衬砌结构力学性能研究[J]. 现代隧道技术, 2022,59(1): 95-103
[11] 杨 娟 1,2,3 杨其新 2,3 邱品茗 2,.基于CSL隧道支护结构的喷膜防水层黏结性能试验研究[J]. 现代隧道技术, 2022,59(1): 104-110
[12] 谌桂舟 1,2 陈 政 1,2 琚国全 3 汪辉武 3 郭 春 1,2.高海拔隧道施工劳动强度与供氧浓度关系研究[J]. 现代隧道技术, 2022,59(1): 118-123
[13] 王 凌 1 钟久强 2,3 朱碧堂 2,3.临近端头井盾构开挖引起土体沉降数值分析[J]. 现代隧道技术, 2022,59(1): 124-132
[14] 杨春山 1 魏立新 1 莫海鸿 2.地震作用对盾构隧道管片张开量的影响及预测[J]. 现代隧道技术, 2022,59(1): 133-140
[15] 丁小彬 韩东霖.运营盾构隧道不同椭圆度变形情况下受力性能分析[J]. 现代隧道技术, 2022,59(1): 141-148
Copyright 2010 by 现代隧道技术