[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2012, Vol. 49 Issue (1) :12-19    DOI:
研究与探讨 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
节理岩体隧道围岩稳定性判定指标合理性研究
西南交通大学 土木工程学院地下工程系
A Study of the Criterion for the Stability of a Tunnel in a Jointed Rock Mass
(School of Civil Engineering, Southwest Jiaotong University, Chengdu
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要  隧道围岩失稳模式和稳定性判据一直是工程界争论的焦点,迄今没有科学合理的标准,常以洞周位移或塑性区经验值作为稳定性判定指标。洞周位移受围岩弹模、隧道形状等因素影响,而且不同部位变形值差异很大,很难找到统一标准;以塑性区作为稳定性判据优于以位移作为判据,围岩塑性化反映连续介质宏观塑性流动力学动态,而不能用于量化判定由优势结构面控制节理岩体破坏的隧道稳定性。文章结合细观节理形态和变化,通过UDEC离散元程序,研究节理岩体隧道失稳模式及量化的稳定性判定指标,探讨了细观结构机制和宏观力学行为关系。结果表明:(1) 结构面极大地削弱岩体力学性质及其稳定性,结构面变形与强度性质对于隧道稳定性起着关键控制性作用;(2) 节理岩体隧道扰动区可划分为脱落区、张开区和剪切滑移区,其中脱落区表征围岩失稳模式,张开区围岩处于脱落临界状态,即塌方潜在区域;(3) 剪切滑移区是诱发围岩发生渐进性破坏主因,提出将剪切滑移区作为节理岩体隧道稳定性判定指标具有严格力学依据,可以定量化评价围岩稳定程度。最后,以在建兰渝铁路木寨岭隧道为例,对比了锚杆支护前后力学效应,验证了以剪切滑移区作为节理岩体隧道稳定性判定指标的可靠性、合理性和现实性。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
张志强
何本国
关宝树
关键词节理岩体        判定指标        剪切滑移区        隧道稳定性        UDEC     
Abstract: The instability model and criterion for the stability of tunnels in jointed rock masses have been a subject of debate, and no scientific and reasonable standard has been reached for the subject so far. The empirical value of the displacement around the tunnel and plastic zone is deemed the criterion for stability of surrounding rock; elastic modulus and the shape of a tunnel have a great influence on the displacement around the tunnel. Additionally, displacements around a tunnel are unequal at different positions. For these reasons, it is difficult to settle upon a unified criterion. The empirical value of the plastic zone is superior to the displacement around the tunnel when it comes to the stability criterion. The plastification of surrounding material reflects the plastic dynamic mechanics of continuous media, but it cannot be adopted to quantitatively evaluate the tunnel stability in a jointed rock mass in which failure is induced by a preferred structural plane. Therefore, combined with the shapes and changes of micro-joints, the instability mode and quantitative criterion for the stability of a tunnel are studied by means of UDEC, and the relationship of the mechanisms of micro-structure and macro-mechanical behavior is analyzed. The conclusions are as follows: (1) The structural plane greatly weakens the mechanic property of the rock mass and its stability. Deformation and the strength of the structural plane play the controlling role in tunnel stability; (2) In the jointed rock mass, the disturbance zone of the surrounding rock is divided into failure shape, open zone and shear and slip zone. The failure means the instability mode of the tunnel, and the open zone means that surrounding rock is under the shedding critical condition, which creates a potential landslide area; (3) The shear and slip zone is the main cause of progressive damage of rock masses, so the shear zone is proposed as the criterion for stability of a tunnel in a jointed rock mass. Based on its strict mechanical foundation, the stability of a rock mass can be evaluated quantitatively. Using the Muzhailing Tunnel of the Lanzhou-Chongqing Passenger Dedicated Line as an example, the mechanical effects of surrounding rock are investigated before and after the implementation of bolt support, which verified the reliability, rationality and feasibility of using the shear and slip zone as the criterion for stability of a tunnel in a jointed rock mass.
KeywordsJointed rock mass,   Criterion of judgment,   Shear and slip zone,   Stability of tunnel,   UDEC      
出版日期: 2011-09-13
基金资助:

基金项目:国家自然科学基金资助项目(51078318);新世纪优秀人才支持计划(Ncet-10-0667);铁道部科技开发计划项目(2009G005).

作者简介: 张志强(1968-),工学博士,教授,从事隧道围岩稳定性科研工作,E-mail:clarkchang68@163.com
引用本文:   
张志强, 何本国, 关宝树 .节理岩体隧道围岩稳定性判定指标合理性研究[J]  现代隧道技术, 2012,V49(1): 12-19
ZHANG Zhi-Qiang, He-Ben-Guo, Guan-Bao-Shu .A Study of the Criterion for the Stability of a Tunnel in a Jointed Rock Mass[J]  MODERN TUNNELLING TECHNOLOGY, 2012,V49(1): 12-19
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2012/V49/I1/12
 
没有本文参考文献
[1] 汪波1, 郭新新1, 何川1, 吴德兴2.当前我国高地应力隧道支护技术特点及发展趋势浅析[J]. 现代隧道技术, 2018,55(5): 1-10
[2] 拓勇飞, 郭小红.南京纬三路过江通道总体设计与关键技术[J]. 现代隧道技术, 2015,52(4): 1-6
[3] 李昕1, 舒恒1, 张亚果2, 杨林松1, 李金1, 郭小红1.超高水压复合地层大直径盾构隧道纵断面优化设计研究[J]. 现代隧道技术, 2015,52(4): 7-14
[4] 姚占虎1, 杨钊2, 田毅1, 忽慧涛1.南京纬三路过江通道工程关键施工技术[J]. 现代隧道技术, 2015,52(4): 15-23
[5] 李新宇, 张顶立, 房倩, 宋浩然.越江跨海隧道突水模式研究[J]. 现代隧道技术, 2015,52(4): 24-31
[6] 舒恒, 吴树元, 李健, 郭小红.超大直径水下盾构隧道健康监测设计研究[J]. 现代隧道技术, 2015,52(4): 32-40
[7] 刘光凤1, 陈方伟2, 周直1, 张士龙3, 刘明强1.基于灰色模糊多属性群决策的越江隧道投资风险辨识[J]. 现代隧道技术, 2015,52(4): 41-48
[8] 姚占虎.南京纬三路过江通道工程盾构段施工风险评估[J]. 现代隧道技术, 2015,52(4): 49-54
[9] 张伯阳1, 赵小鹏1, 张亚果2, 陈郁1.泥水盾构饱和法带压开舱风险控制技术[J]. 现代隧道技术, 2015,52(4): 55-61
[10] 李玉峰1,2, 彭立敏1, 雷明峰1,2.高速铁路交叉隧道动力学问题研究综述[J]. 现代隧道技术, 2015,52(2): 8-15
[11] 张瀚1,2, 李英明1,3, 任方涛2, 杨明东3.基于Zienkiewicz-Pande 准则的隧道/巷道围岩弹塑性分析[J]. 现代隧道技术, 2015,52(2): 30-35
[12] 周泽林, 陈寿根, 李岩松.深埋引水隧洞软弱围岩支护结构受力特征研究[J]. 现代隧道技术, 2015,52(2): 36-43
[13] 金大龙, 李兴高.砂土地层盾构隧道开挖面支护压力与地表变形关系模型试验研究[J]. 现代隧道技术, 2015,52(2): 44-51
[14] 王亚琼1,2, 周绍文1, 孙铁军3, 谢永利1.基于非对称贴近度的在役隧道衬砌结构健康诊断方法[J]. 现代隧道技术, 2015,52(2): 52-58
[15] 纪新博1, 赵文1, 韩健勇1, 周永伟2, 于宏福3.中洞法施工支护结构对地面沉降和内力影响参数分析[J]. 现代隧道技术, 2015,52(2): 59-66
Copyright 2010 by 现代隧道技术