[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2013, Vol. 50 Issue (4) :104-108    DOI:
分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
基于GIS的水下隧道突水危险性评价
——以武汉长江隧道江底段为例——
(中国地质大学(武汉)工程学院,武汉  430074)
GIS-Based Risk Assessment of a Water Burst in an Underwater Tunnel:
A Case Study of the Yangtze River Tunnel in Wuhan
(Engineering Faculty, China University of Geosciences, Wuhan  430074)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 文章应用GIS系统和数值模拟技术,以武汉长江隧道为例,对水下隧道突水危险性进行了分析评价。首先对隧道纵剖面和横剖面进行单元划分,然后将数值模拟成果转换到GIS中,以形成突水危险性评价数据库;在数据库支持下,对每个评价单元应用摩尔-库仑准则判断剪切破坏,应用最大拉应变准则判断拉伸破坏,将达到破坏标准的单元定义为突水单元;再对隧道同一横剖面的突水单元分布进行分析,搜寻潜在的突水通道;最后根据搜寻结果及突水单元的比例,结合江底段地表允许沉降控制标准进行突水危险性的划分。分析计算结果表明,武汉市过江隧道江底段纵剖面中,突水危险单元占本段72%,突水安全到危险过渡单元占19%,突水安全单元占9%;存在潜在突水通道的单元占江底段的12%,在施工过程中需要高度重视。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词    GIS            水下隧道            突水            危险性评价     
Abstract:  Using the Yangtze River Tunnel as an example, the risk assessment of a water burst in an underwater tunnel was carried out using a geographic information system (GIS) and numerical simulation. Firstly, the assessment units were divided on the horizontal and longitudinal sections of tunnel. Secondly, the data obtained by numerical simulations were converted in the GIS to form a relative database which can judge the shear failure and tensile failure in each assessment unit by the Mole-Coulomb criteria and maximum tensile strain criteria, respectively. Thirdly, each unit of water burst in the horizontal section was analyzed to search for potential passage for a water burst. Finally, the water-burst risk level was classified based on the above results and the percentages of water burst units as well as the allowable settlement standard. As for the water burst risk, the analyzed and calculated results show that it is 72% for the risky units, 19% for the moderate units, 9% for the safe units in the longitudinal profile, and 12% for the units with potential water burst passages, to which a high level of attention should be paid.
KeywordsGIS,   Underwater tunnel,   Water burst,   Risk assessmen     
出版日期: 2012-09-20
基金资助:

 武汉市科技攻关项目(200860423195).

作者简介: 李雪平(1969- ),女,博士,副教授,主要从事土木工程与地质工程的教学与科研工作,E-mail:lixp@cug.edu.cn.
引用本文:   
.基于GIS的水下隧道突水危险性评价
——以武汉长江隧道江底段为例——[J]  现代隧道技术, 2013,V50(4): 104-108
.GIS-Based Risk Assessment of a Water Burst in an Underwater Tunnel:
A Case Study of the Yangtze River Tunnel in Wuhan[J]  MODERN TUNNELLING TECHNOLOGY, 2013,V50(4): 104-108
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2013/V50/I4/104
 
没有本文参考文献
[1] 汪波1, 郭新新1, 何川1, 吴德兴2.当前我国高地应力隧道支护技术特点及发展趋势浅析[J]. 现代隧道技术, 2018,55(5): 1-10
[2] 拓勇飞, 郭小红.南京纬三路过江通道总体设计与关键技术[J]. 现代隧道技术, 2015,52(4): 1-6
[3] 李昕1, 舒恒1, 张亚果2, 杨林松1, 李金1, 郭小红1.超高水压复合地层大直径盾构隧道纵断面优化设计研究[J]. 现代隧道技术, 2015,52(4): 7-14
[4] 姚占虎1, 杨钊2, 田毅1, 忽慧涛1.南京纬三路过江通道工程关键施工技术[J]. 现代隧道技术, 2015,52(4): 15-23
[5] 李新宇, 张顶立, 房倩, 宋浩然.越江跨海隧道突水模式研究[J]. 现代隧道技术, 2015,52(4): 24-31
[6] 舒恒, 吴树元, 李健, 郭小红.超大直径水下盾构隧道健康监测设计研究[J]. 现代隧道技术, 2015,52(4): 32-40
[7] 刘光凤1, 陈方伟2, 周直1, 张士龙3, 刘明强1.基于灰色模糊多属性群决策的越江隧道投资风险辨识[J]. 现代隧道技术, 2015,52(4): 41-48
[8] 姚占虎.南京纬三路过江通道工程盾构段施工风险评估[J]. 现代隧道技术, 2015,52(4): 49-54
[9] 张伯阳1, 赵小鹏1, 张亚果2, 陈郁1.泥水盾构饱和法带压开舱风险控制技术[J]. 现代隧道技术, 2015,52(4): 55-61
[10] 李玉峰1,2, 彭立敏1, 雷明峰1,2.高速铁路交叉隧道动力学问题研究综述[J]. 现代隧道技术, 2015,52(2): 8-15
[11] 张瀚1,2, 李英明1,3, 任方涛2, 杨明东3.基于Zienkiewicz-Pande 准则的隧道/巷道围岩弹塑性分析[J]. 现代隧道技术, 2015,52(2): 30-35
[12] 周泽林, 陈寿根, 李岩松.深埋引水隧洞软弱围岩支护结构受力特征研究[J]. 现代隧道技术, 2015,52(2): 36-43
[13] 金大龙, 李兴高.砂土地层盾构隧道开挖面支护压力与地表变形关系模型试验研究[J]. 现代隧道技术, 2015,52(2): 44-51
[14] 王亚琼1,2, 周绍文1, 孙铁军3, 谢永利1.基于非对称贴近度的在役隧道衬砌结构健康诊断方法[J]. 现代隧道技术, 2015,52(2): 52-58
[15] 纪新博1, 赵文1, 韩健勇1, 周永伟2, 于宏福3.中洞法施工支护结构对地面沉降和内力影响参数分析[J]. 现代隧道技术, 2015,52(2): 59-66
Copyright 2010 by 现代隧道技术