盾构下穿施工 , ,地面沉降 , ,地层损失 , ,保护建筑群," /> 超大直径盾构下穿保护建筑群地面沉降预测 [an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2013, Vol. 50 Issue (5) :98-104    DOI:
分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
超大直径盾构下穿保护建筑群地面沉降预测
(1同济大学岩土与地下工程教育部重点实验室,上海 200092;2同济大学地下建筑与工程系,上海 200092;
3 上海隧道工程股份有限公司,上海 200072)
Prediction of Ground Settlement Induced by an Extra-Large Diameter Shield Passing Under Sensitive Buildings
(1 Key Laboratory of Geotechnical and Underground Engineering, Ministry of Education, Tongji University, Shanghai 200092;
2 Department of Geotechnical Engineering, Tongji University, Shanghai 200092;
3 Shanghai Tunnel Engineering Co. Ltd., Shanghai 200072)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 地铁隧道盾构下穿保护建筑群施工中,如何准确预测和合理控制诱发的地面沉降是亟待解决的难题。文章结合某超大直径盾构下穿保护建筑群施工实践,基于地层损失,利用经验-解析法建立了地面沉降和地层损失率的关系;利用Peck公式分析不同地层损失率下地面沉降以及不同距离、不同地层损失率对应的沉降值大小,再利用Attewell公式和刘建航公式对盾构推进至始发井前方不同距离处不同地层损失率下,以及通常地层损失率下盾构推进至不同位置处的地面纵向沉降进行了研究分析,并将其与监测数据进行了对比。结果表明,监测数据与解析计算结果吻合较好;盾构推进诱发的地面沉降最大值均位于隧道中轴线处,最大沉降量随着地层损失率的增大而增大;在相同的地层损失率下,距离隧道轴线越远的位置,盾构推进诱发的地面沉降越小。
Service
把本文推荐给朋友 盾构下穿施工   地面沉降   地层损失   保护建筑群”几篇好文章,特向您推荐。请点击下面的网址:" name=neirong>
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词盾构下穿施工 ')" href="#">     
Abstract:  The prediction of ground settlement induced by a shield passing under sensitive buildings is an urgent problem to be solved in shield construction. Using the construction of an extra-large diameter shield passing under sensitive buildings as an example, and based on ground loss theory, a relationship between ground settlement and the ground loss ratio is established by the empirical-analytic method. The ground settlements under different ground loss ratios and the magnitudes of settlement under different distances to the center line and different ground loss ratios are calculated with the Peck formula. Additionally, using the Attewell formula and the Liu Jianhang formula, the longitudinal ground settlements under different driving distances and different ground loss ratios, as well as the longitudinal ground settlements under different driving distances and the common ground loss ratio, are calculated respectively. The calculation results are verified in comparison with the measured ones. The results show that the empirical-analytic model can accurately predict ground settlement; all the maximum ground settlements induced by shield driving just emerge at the tunnel central axis, increasing with the increment of ground loss ratio; and under the same ground loss ratio, the further the distance from the tunnel axis, the smaller the ground settlement is.
Keywords Underneath shield construction')" href="#">     
基金资助:
基金项目:国家自然科学基金(41072205),上海市自然科学基金 (10ZR1431500).
作者简介: 作者简介: 王建秀(1971-),男,博士,博士生导师,副教授,主要从事地质工程、地下结构及岩土工程方面的教学与研究, E-mail:wang_jianxiu@163.com.
引用本文:   
.超大直径盾构下穿保护建筑群地面沉降预测[J]  现代隧道技术, 2013,V50(5): 98-104
.Prediction of Ground Settlement Induced by an Extra-Large Diameter Shield Passing Under Sensitive Buildings[J]  MODERN TUNNELLING TECHNOLOGY, 2013,V50(5): 98-104
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2013/V50/I5/98
 
没有本文参考文献
[1] 汪波1, 郭新新1, 何川1, 吴德兴2.当前我国高地应力隧道支护技术特点及发展趋势浅析[J]. 现代隧道技术, 2018,55(5): 1-10
[2] 拓勇飞, 郭小红.南京纬三路过江通道总体设计与关键技术[J]. 现代隧道技术, 2015,52(4): 1-6
[3] 李昕1, 舒恒1, 张亚果2, 杨林松1, 李金1, 郭小红1.超高水压复合地层大直径盾构隧道纵断面优化设计研究[J]. 现代隧道技术, 2015,52(4): 7-14
[4] 姚占虎1, 杨钊2, 田毅1, 忽慧涛1.南京纬三路过江通道工程关键施工技术[J]. 现代隧道技术, 2015,52(4): 15-23
[5] 李新宇, 张顶立, 房倩, 宋浩然.越江跨海隧道突水模式研究[J]. 现代隧道技术, 2015,52(4): 24-31
[6] 舒恒, 吴树元, 李健, 郭小红.超大直径水下盾构隧道健康监测设计研究[J]. 现代隧道技术, 2015,52(4): 32-40
[7] 刘光凤1, 陈方伟2, 周直1, 张士龙3, 刘明强1.基于灰色模糊多属性群决策的越江隧道投资风险辨识[J]. 现代隧道技术, 2015,52(4): 41-48
[8] 姚占虎.南京纬三路过江通道工程盾构段施工风险评估[J]. 现代隧道技术, 2015,52(4): 49-54
[9] 张伯阳1, 赵小鹏1, 张亚果2, 陈郁1.泥水盾构饱和法带压开舱风险控制技术[J]. 现代隧道技术, 2015,52(4): 55-61
[10] 李玉峰1,2, 彭立敏1, 雷明峰1,2.高速铁路交叉隧道动力学问题研究综述[J]. 现代隧道技术, 2015,52(2): 8-15
[11] 张瀚1,2, 李英明1,3, 任方涛2, 杨明东3.基于Zienkiewicz-Pande 准则的隧道/巷道围岩弹塑性分析[J]. 现代隧道技术, 2015,52(2): 30-35
[12] 周泽林, 陈寿根, 李岩松.深埋引水隧洞软弱围岩支护结构受力特征研究[J]. 现代隧道技术, 2015,52(2): 36-43
[13] 金大龙, 李兴高.砂土地层盾构隧道开挖面支护压力与地表变形关系模型试验研究[J]. 现代隧道技术, 2015,52(2): 44-51
[14] 王亚琼1,2, 周绍文1, 孙铁军3, 谢永利1.基于非对称贴近度的在役隧道衬砌结构健康诊断方法[J]. 现代隧道技术, 2015,52(2): 52-58
[15] 纪新博1, 赵文1, 韩健勇1, 周永伟2, 于宏福3.中洞法施工支护结构对地面沉降和内力影响参数分析[J]. 现代隧道技术, 2015,52(2): 59-66
Copyright 2010 by 现代隧道技术