[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2025, Vol. 62 Issue (1) :221-230    DOI:
试验与监测 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
隧道管道型岩溶突水突泥灾变演化模型试验研究
(1.极端环境岩土与隧道工程智能建养全国重点实验室,成都 610031;2.中铁二院工程集团有限责任公司,成都 610031;3.西南交通大学土木工程学院,成都 610031)
Experimental Study on the Catastrophic Evolution of Water and Mud Inrush in Tunnels with Karst Conduits
(1.State Key Laboratory of Intelligent Geotechnics and Tunnelling, Chengdu 610031; 2.China Railway Eryuan Engineering Group Co. Ltd., Chengdu 610031; 3.School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031)
Download: PDF (6490KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为探明管道型岩溶灾害的孕育-演化-形成多阶段行为,揭示管道型岩溶灾害演变机理,结合研发的大比尺突水突泥灾害模型试验系统,以某高铁岩溶隧道为工程背景开展模型试验研究,分析管道型岩溶隧道涌突灾害发生时围岩稳定性演化规律及灾变失稳特征。研究结果表明:(1)模型试验中管道型岩溶灾害发展过程分为稳定、渗流、涌突和衰减4个阶段。(2)灾害演化本质上是开挖卸荷、地下水渗流等因素引起应力-渗流耦合作用,使得掌子面前方防突岩体出现裂隙,裂隙贯通形成渗水通道,进而产生失稳的过程。(3)以围岩压力释放率表征开挖卸荷作用和突水突泥灾害演化过程中岩体渗透破坏作用,当掌子面距管道型致灾构造较远时,围岩压力释放率主要由开挖卸荷控制;当距离较近时,围岩压力释放率主要由涌突灾害控制。(4)渗流压力、围岩压力以及围岩位移时程曲线具有显著的灾害前兆特征,可作为灾害预测和发生的判识标准;以渗流压力和围岩压力的突变点作为防突岩体失稳的临界点,并结合工程实际给出合理的防突岩体厚度取值建议。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
陶伟明1
2 朱星宇1
3 张志强1
3 于 航1
3 范 磊2
关键词隧道突水突泥   管道型岩溶   灾变演化   模型试验   防突岩体     
Abstract: To investigate the multi-stage behaviors of karst conduit induced water and mud inrush disasters, including the development, evolution and formation, and to reveal the evolution mechanism of karst conduit induced disasters,a large-scale model experiment system for water and mud inrush disasters was developed and the model test was conducted based on a high-speed railway karst tunnel project. The study analyzed the stability evolution law of surrounding rock and the instability characteristics during water and mud inrush disasters in karst tunnels. The results show that: (1) The development process of karst conduit induced disasters in the model test is divided into four stages: stability, seepage, inrush and attenuation. (2) The evolution of the disaster is essentially caused by excavation unloading and groundwater seepage, which lead to stress-seepage coupling. This causes fissures to form in the rock mass ahead of the tunnel face, which eventually connect to form seepage channels, leading to instability. (3) The release rate of surrounding rock pressure is used to characterize the excavation unloading effect and the rock mass seepage failure effect during the evolution of the water and mud inrush disaster. When the tunnel face is far from the karst disaster-causing structure, the surrounding rock pressure release rate is mainly controlled by excavation unloading; when it is close, the rate is mainly controlled by the water and mud inrush disaster. (4) The time-history curves of the seepage pressure, surrounding rock pressure, and surrounding rock displacement exhibit significant precursor characteristics of the disaster, which can serve as predictive indicators and identification criteria for the disaster occurrence. The inflection points of seepage pressure and surrounding rock pressure are proposed as the critical points for the instability of the anti-inrushing rock mass, and reasonable thickness values of the anti-inrushing rock mass are provided based on practical engineering considerations.
KeywordsTunnel water and mud inrush,   Karst conduit,   Disaster evolution,   Model test,   Anti-inrushing rock mass     
基金资助:国家自然科学基金(52378414).
作者简介: 陶伟明(1968-),男,博士研究生,教授级高级工程师,主要从事隧道工程设计方面的工作和研究,E-mail: taowm@ey. crec.cn. 通讯作者:张志强(1968-),男,博士,教授,主要从事隧道工程设计和施工理论方面的工作和研究,E-mail:clarkchang68@163.com.
引用本文:   
陶伟明1, 2 朱星宇1, 3 张志强1等 .隧道管道型岩溶突水突泥灾变演化模型试验研究[J]  现代隧道技术, 2025,V62(1): 221-230
TAO Weiming1, 2 ZHU Xingyu1, 3 ZHANG Zhiqiang1 etc .Experimental Study on the Catastrophic Evolution of Water and Mud Inrush in Tunnels with Karst Conduits[J]  MODERN TUNNELLING TECHNOLOGY, 2025,V62(1): 221-230
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2025/V62/I1/221
 
没有本文参考文献
[1] 张昕阳1,2 申玉生1,2 常铭宇1,2 王浩鱇1,2 潘笑海1,2 王岩岩1,2.基于GA-BP神经网络的隧道围岩相似材料配合比设计[J]. 现代隧道技术, 2024,61(6): 82-91
[2] 匡 亮1 粟 威1 陶伟明1 田四明2 申玉生3 黎 旭2 汪辉武1.跨走滑断层隧道结构影响分区及设防范围研究[J]. 现代隧道技术, 2024,61(6): 45-54
[3] 杨文东1 吴 洋1 王智德1 武海港1,2 李 根1.隧道开挖对既有桩基影响分区的试验研究[J]. 现代隧道技术, 2024,61(6): 200-208
[4] 杨春山1 徐世杨2 魏立新1 陈俊生3.垂直顶升作用下盾构隧道力学特性模型试验研究[J]. 现代隧道技术, 2024,61(5): 210-218
[5] 潘笑海1 申玉生1 王浩鱇1 王岩岩1 张昕阳1 张 熙1 左雷彬2.多破裂面走滑断层错动下隧道结构响应规律研究[J]. 现代隧道技术, 2024,61(4): 210-220
[6] 陈泽恩1,2 陈小峰1,2,3 孔祥苗4 张 欣5 张永强2 刁岳峰1 吴 珂1,2,3.分叉隧道合流段流动特征及局部损失特性研究[J]. 现代隧道技术, 2024,61(3): 53-60
[7] 刘泓志1 徐善坤1 郭易东2,3 方应冉2,3 李兴高2,3.泥浆流变模型对泥水盾构排浆管道压力损失特性的影响分析[J]. 现代隧道技术, 2024,61(1): 182-189
[8] 曾 毅1 高 越2,3 吴沛霖2,3 张小龙1 付艳斌2,3.既有盾构隧道抬升模型试验研究[J]. 现代隧道技术, 2024,61(1): 200-207
[9] 马亚丽娜1, 2 陈雅琪1, 2 刘继国1, 2 崔 臻3 周光新4.跨走滑断层铰接式隧洞衬砌错断破坏机制研究[J]. 现代隧道技术, 2023,60(5): 136-147
[10] 郑坤隆 1,2 王剑云 2 令狐延 1 杨晓华 3 丁亚特 1 陈 锟 1 王志丰 3.速凝渗透结晶型浆液用于隧道渗漏的防治试验研究[J]. 现代隧道技术, 2023,60(4): 254-263
[11] 朱才辉 1,2 尹 力 2 杨奇强 2 李玉波 3.饱和Q2黄土地层引水隧洞衬砌外水压力折减系数研究[J]. 现代隧道技术, 2023,60(2): 94-102
[12] 许 芃 1,2 彭 鹏 1,2 琚国全 3 赵万强 3 张志强 1,2.砂板岩互层隧道掌子面突水灾变发生模型试验研究[J]. 现代隧道技术, 2023,60(2): 271-281
[13] 袁向华 1,2 朱雁飞 1 朱叶艇 1,2.基于最大压力冗余原则的盾构推拼同步技术试验验证[J]. 现代隧道技术, 2022,59(6): 106-113
[14] 陈仁东 1 陆 平 2 孙 烨 1 刘明高 1 庞 康 1.超大直径盾构隧道横通道离心模型试验研究[J]. 现代隧道技术, 2022,59(6): 114-124
[15] 朱叶艇 1,2 龚 卫 1,2 秦 元 1,2 袁向华 1,2 吴文斐 1,2 章博雅 1,2 朱雁飞 1.基于目标总推力矢量的盾构推进油缸压力闭环控制技术[J]. 现代隧道技术, 2022,59(5): 170-178
Copyright 2010 by 现代隧道技术