[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2023, Vol. 60 Issue (6) :151-164    DOI:
绿色智能建造 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
基于多元算法融合的软岩隧道围岩变形预测模型及应用研究
(中铁十八局集团有限公司,天津 300350)
Study on the Prediction Model of Surrounding Rock Deformation in Soft Rock Tunnel Based on Multivariate Algorithm Fusion and Its Application
(China Railway 18th Bureau Group Co., Ltd., Tianjin 300350)
Download: PDF (11003KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要  针对传统软岩隧道围岩变形预测方法适用性和泛化能力不足的问题,提出一种基于改进D-S证据理论的多元算法融合模型,以天桥山隧道为工程依托,构建相应的软岩隧道围岩变形预测流程框架。首先采用果蝇优化算法(FOA)优化随机森林(RF)模型,采用鲸鱼优化算法(WOA)优化长短时记忆神经网络(LSTM)模型,结合偏最小二乘回归(PLSR)预测模型,采用改进D-S证据理论计算3个模型的融合权重并进行决策级融合,得到基于多元算法融合的围岩拱顶沉降及水平收敛预测模型;然后以天桥山隧道DK110+600断面G、S1、S2和S3测点的监测数据作为训练和测试样本,对比PLSR模型、RF模型、LSTM模型、FOA-RF模型、WOA-LSTM模型和多元算法融合模型的预测效果;最后以DK110+605断面为例对多元算法融合模型进行工程应用。对比结果表明,多元算法融合模型预测精度最高,相对误差在[-1.5 mm,1.5 mm]以内,平均R2 值为0.998 5,平均MAPE值为3.09%,可以实现对软岩隧道围岩变形的准确预测;工程应用表明,模型总体预测误差在[-3 mm,2 mm]以内,平均R2值为0.995 6,平均MAPE值为5.65%,具有较高预测精度,满足指导施工的要求
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
侯守江
关键词软岩隧道   变形预测   多元算法融合   改进D-S证据理论     
Abstract: Since the traditional methods for predicting surrounding rock deformation in soft rock tunnels are lacking in suitability and generalization, a multivariate algorithm fusion model based on the improved D-S evidence theory has been proposed, and the process framework for prediction of surrounding rock deformation in soft rock tunnel has been established by using the Tianqiaoshan Tunnel Project as an engineering example. First, the fruit fly optimization algorithm (FOA) is used to optimize the random forest (RF) model and the whale optimization algorithm (WOA) is used to optimize the long short-term memory neural network (LSTM) model. The partial least squares regression(PLSR) prediction model and the improved D-S evidence theory are used to calculate the fusion weight of the 3 models and realize decision-level fusion, which generates the surrounding rock crown settlement and horizontal convergence prediction model based on the multivariate algorithm fusion. Then the data from the measuring points G, S1,S2 and S3 of the DK110+600 cross section of Tianqiaoshan Tunnel are used as training and test samples, to compare the prediction results of PLSR model, RF model, LSTM model, FOA-RF model, WOA-LSTM model and multivariate algorithm fusion model. At last, the multivariate algorithm fusion model is put to engineering application at the DK110+605 cross section. According to comparison of the models, the multivariate algorithm fusion model has the highest prediction accuracy, its relative error is within the range of [-1.5 mm, 1.5 mm], its average R2 value is 0.998 5 and average MAPE value 3.09%, and it allows accurate prediction of the surrounding rock deformation pat? tern of soft rock tunnel. Accounting to its engineering application, the overall prediction error of the model is within the range of [-3 mm, 2 mm], its average R2 value is 0.995 6 and average MAPE value 5.65%, and it has high enough prediction accuracy to guide construction activities.
KeywordsSoft rock tunnels,   Deformation prediction,   Multivariate algorithm fusion,   Improved D-S evidence theory     
基金资助:中铁十八局集团有限公司科技研究计划课题(G18-07).
作者简介: 侯守江(1968-),男,硕士,高级工程师,主要从事隧道、桥梁、路基等施工技术与管理方面的工作,E-mail:2130305490@qq.com.
引用本文:   
侯守江 .基于多元算法融合的软岩隧道围岩变形预测模型及应用研究[J]  现代隧道技术, 2023,V60(6): 151-164
HOU Shoujiang .Study on the Prediction Model of Surrounding Rock Deformation in Soft Rock Tunnel Based on Multivariate Algorithm Fusion and Its Application[J]  MODERN TUNNELLING TECHNOLOGY, 2023,V60(6): 151-164
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2023/V60/I6/151
 
没有本文参考文献
[1] 马 栋 晋刘杰 王武现 黄立新.基于数值模拟与实测数据拟合的高地应力软岩隧道二次衬砌施作时机探讨[J]. 现代隧道技术, 2022,59(4): 137-146
[2] 刘志良 1 林后来 1 李 亮 1 李东贤 1 高 原 2 徐 亮 1 胡 俊 3.基于多重响应面法和蒙特卡罗法的隧道系统可靠度分析[J]. 现代隧道技术, 2022,59(3): 78-87
[3] 陈志敏 1,2 李江鹏 1 薛智文 3.极高地应力软岩隧道丢失变形与控制模型试验研究[J]. 现代隧道技术, 2022,59(1): 164-175
[4] 何乐平 1 徐应东 1 胡启军 1 蔡其杰 2.基于博弈论-云模型的软岩隧道大变形风险评估[J]. 现代隧道技术, 2021,58(6): 85-94
[5] 廖烟开 1 郭德平 1 刘志强 2 陈大阳 2.隧道周边应变与挤压因子法在隧道围岩大变形预测中的应用[J]. 现代隧道技术, 2020,57(4): 20-26
[6] 马时强 1,2.软岩大变形条件下围岩变形与围岩压力的关系研究[J]. 现代隧道技术, 2020,57(1): 44-50
[7] 王道远 1, 2,3 袁金秀 1 王记平 1 王 凯 4 夏 勇 4 王海蛟 4 温 明 4.考虑施工过程的浅埋软弱隧道管棚变形预测及参数敏感性分析[J]. 现代隧道技术, 2019,56(1): 79-86
[8] 周冠南 1 孙玉永 2 贾 蓬 3.基于遗传算法的BP神经网络在隧道围岩参数反演和变形预测中的应用[J]. 现代隧道技术, 2018,55(1): 107-113
[9] 徐国文 1 何 川 1 代 聪 1 汪 耀 2.复杂地质条件下软岩隧道大变形破坏机制及开挖方法研究[J]. 现代隧道技术, 2017,54(5): 146-154
[10] 孟陆波 1 潘皇宋 1,2 李天斌 1 张文居 3.鹧鸪山隧道二次衬砌开裂机理及支护时机探讨[J]. 现代隧道技术, 2017,54(2): 129-136
[11] 吕显福 1 赵占群 2 魏星星 2.高地应力软岩隧道大变形机理及控制措施探讨——以木寨岭隧道为例[J]. 现代隧道技术, 2016,53(6): 227-231
[12] 李国良1, 刘志春2, 朱永全2.兰渝铁路高地应力软岩隧道挤压大变形规律及分级标准研究[J]. 现代隧道技术, 2015,52(1): 62-68
[13] 刘阳1, 2, 伍晓军2, 刘志强2, 刘玉勇2, 舒波2.关于碳质板岩隧道大变形机理及应对措施的探讨[J]. 现代隧道技术, 2014,51(6): 19-24
[14] 徐前卫1, 朱合华2, 丁文其2, 李志厚3, 罗云4, 朱道建5.软弱隧道围岩锚杆支护效应的落门试验研究[J]. 现代隧道技术, 2014,51(5): 108-113
[15] 王剑晨, 张顶立, 张成平, 苏 洁, 台启民.近接施工上覆既有车站变形动态反分析及预测[J]. 现代隧道技术, 2014,51(4): 58-66
Copyright 2010 by 现代隧道技术