[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2011, Vol. 48 Issue (3) :80-86    DOI:
分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
南京纬三路大直径越江盾构隧道冻结法出洞方案研究
(中交第二公路勘察设计研究院有限公司,武汉  430056)
Study on Freezing Method Applied for Large Diameter River-crossing
Shield Tunnel in Nanjing City
(CCCC Second Highway Consultants Co. Ltd , Wuhan 430056)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要     南京纬三路过江通道在江中段采用盾构法修建,其内设上下层双向四车道,直径为14.5 m。该隧道江北盾构出洞时主要穿越淤泥质粘土,土体含水量大,承载力低,若采用普通加固方式很难保证盾构出洞破壁时土体的稳定和有效隔水,设计采用人工地层冻结加固技术。结合现场实际情况,利用数值方法,就冻结施工时土体冻胀效应对地下连续墙安全性的影响进行了研究,分析了局部冻结和全局冻结对地表变形的影响,探讨了冻结壁的合理厚度。研究结果表明:冻结壁交圈后,地下连续墙的受力较大、变形较小,井壁封门拆除后冻结壁受力和变形均较大,弯矩和位移分布图在隧道中心处呈抛物面形;与全局冻结方案相比,采用局部冻结法可以较好地控制冻结变形,显著降低冻结所造成的地表隆起量。当冻结壁厚度为3.9 m时,冻结壁的最小安全系数为4.1,最大变形为23.2 mm;当冻结壁厚度为3.0 m时,冻结壁的最小安全系数为3.0,最大变形为35.5 mm。考虑到现场实际情况,认为冻结壁厚度采用3.9 m较为保守,不经济,宜采用3.0 m。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
魏龙海
郭小红
乔春江
史世波
关键词越江隧道        大直径盾构        盾构出洞        冻结法        数值模拟     
Abstract: The river-crossing passage through Weisan Road of Nanjing will be built by shield tunneling, with two storeys, two-way four lanes and 14.5m diameter. The north exit approach mainly passes through muddy silt with rich water and low bearing capacity, and it is difficult to ensure the stability of soil and effective waterproofing by ordinary consolidation method. So it was designed to adopt artificial ground freezing. With the help of numerical method incorporating the site conditions, the effect of soil frost swelling on safety of diaphragm wall was studied, and the effect of local freezing and overall freezing on surface deformations was analyzed. In addition the reasonable thickness of freezing wall was studied. Research results showed that the diaphragm deformed a little due to large carrying capacity after the closure of freezing wall, the force bearing capacity of freezing wall and deformations were large after dismantling the sealing door on the wall and the distribution diagram of bending moments and displacements took the form of paraboloid at tunnel center. Compared with the overall freezing, local freezing could well control the freezing deformations and significantly reduce the surface heaving induced by freezing. When the thickness of freezing wall was 3.9m, the min.safety factor was 4.1 and max. deformation was 23.2mm. And when the thickness of freezing wall was 3 m, the min. safety factor was 3 and the max. deformation was 35.5mm. Taking the actual site conditions into consideration, the thickness of freezing wall of 3.9m is conservative and uneconomic and it is suggested that 3.0m should be taken.
KeywordsRiver-crossing tunnel,   Large diameter shield,   shield breakthrough,   Freezing method,   Numerical simulation     
出版日期: 2010-12-03
作者简介: 魏龙海(1979-),男,博士,工程师,主要从事地下工程方面的设计和研究工作,E-mail: wlh_0902@163.com
引用本文:   
魏龙海, 郭小红, 乔春江等 .南京纬三路大直径越江盾构隧道冻结法出洞方案研究[J]  现代隧道技术, 2011,V48(3): 80-86
WEI Long-Hai, Guo-Xiao-Hong, Qiao-Chun-Jiang etc .Study on Freezing Method Applied for Large Diameter River-crossing
Shield Tunnel in Nanjing City[J]  MODERN TUNNELLING TECHNOLOGY, 2011,V48(3): 80-86
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2011/V48/I3/80
 
没有本文参考文献
[1] 任 伟 1 王 松 2 王 龙 3.弱透水地层条件下基坑降水试验研究分析[J]. 现代隧道技术, 2019,56(4): 188-193
[2] 雷 帅 1,2 方 勇 3 刘 静 4 黄 磊 1,2.南大梁高速公路华蓥山隧道施工通风优化研究[J]. 现代隧道技术, 2019,56(2): 194-200
[3] 魏 纲 1 陆世杰 2.沉管隧道管节柔性接头模型研究现状及展望[J]. 现代隧道技术, 2019,56(1): 6-13
[4] 刘海涛 1 周 辉 2 胡大伟 2 高 阳 2.核废料处置库热-力耦合数值模拟研究[J]. 现代隧道技术, 2019,56(1): 47-55
[5] 周 磊 朱哲明 刘 邦 赵彦琳 周 琴.裂纹位置与深度对围岩岩体稳定性的影响分析[J]. 现代隧道技术, 2019,56(1): 130-138
[6] 闫自海 1,2 章立峰 1,2 路军富 3 邹金杰 1,2.城市地下立交隧道交叉口施工方法研究[J]. 现代隧道技术, 2019,56(1): 176-184
[7] 刘海涛 1 周 辉 2 卢景景 2 胡大伟 2 杨凡杰 2.深埋隧洞岩爆的抽样概率预测方法[J]. 现代隧道技术, 2018,55(6): 59-66
[8] 苑绍东 1 杨 林 2 黄 舰 2.并行隧道工程中后行隧道分步开挖对先行隧道横纵向地表沉降的影响研究[J]. 现代隧道技术, 2018,55(6): 80-86
[9] 赵智涛 1,2 曹伍富 1,2 王 霆 1,2.隧道爬坡开挖与水平开挖掌子面稳定性对比分析[J]. 现代隧道技术, 2018,55(6): 94-100
[10] 赵勇坚 1 龚 燚 2 丁 勇 2 董雪花 2.综合管廊天然气舱内爆炸对邻近地铁隧道的影响研究[J]. 现代隧道技术, 2018,55(6): 139-143
[11] 汪波1, 郭新新1, 何川1, 吴德兴2.当前我国高地应力隧道支护技术特点及发展趋势浅析[J]. 现代隧道技术, 2018,55(5): 1-10
[12] 黄振恩 吴俊 张洋 刘陕南.考虑流固耦合效应的盾构隧道开挖面稳定性研究[J]. 现代隧道技术, 2018,55(5): 61-71
[13] 陶连金1 李卓遥1 杨秀仁2 丁鹏1 单鑫玉1.基于ABAQUS的预制装配式地铁车站结构拼装成环后力学行为研究[J]. 现代隧道技术, 2018,55(5): 115-123
[14] 孙连勇 黄永亮 王启民 周浩 代长顺.地铁盾构隧道下穿既有铁路变形控制研究[J]. 现代隧道技术, 2018,55(5): 140-145
[15] 焦亚基1 朱合华1,2 闫治国1 孟晗1 周龙1 沈奕3.深层调蓄排水盾构隧道管片接头预埋件抗拉试验三维数值模拟研究[J]. 现代隧道技术, 2018,55(5): 188-200
Copyright 2010 by 现代隧道技术