[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2017, Vol. 54 Issue (5) :54-60    DOI:
研究与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
基于 IAF-SVM的隧道位移反分析研究
(1 辽宁科技大学土木工程学院,鞍山 114051;2 河北省高速公路管理局路政总队,石家庄 050800)
Back Analysis of Tunnel Displacements Based on the IAF-SVM Algorithm
(1 Civil Engineering College of University of Science and Technology Liaoning, Anshan114051; 2 Road Administration of Hebei Province Expressway Management Bureau, Shijiazhuang 067512)
Download: PDF (938KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 在隧道位移反分析方面,文章针对BP神经网络易过度训练样本及小样本精度较低的缺陷,利用支持向量机(SVM)良好的泛化能力,提出了一种基于支持向量机进行隧道工程的弹塑性位移反分析方法。同时考虑支持向量机的性能很大程度依赖于参数的选择,运用改进的人工鱼群(IAF)高效的全局搜索能力,寻找最优的SVM参数,以此避免SVM在参数选择上的随机性。利用FLAC3D软件进行某隧道工程正分析计算,依据若干测点的位移计算结果,运用该方法进行弹塑性位移反演。结果表明,在小样本空间里,该方法的收敛速度和反演精度均优于BP神经网络。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词:   
Abstract: In light of the defects of overtraining a sample of a BP neural network and the low precision of a small sample, a SVM-based back analysis method for tunnel elastic-plastic displacement is proposed using the generalization ability of a support vector machine(SVM). Considering that the performance of the support vector machine (SVM) largely depends on the selection of parameters, the efficient global search ability of the improved artificial fish (IAF) is adopted to get the optimal parameters of the SVM to avoid randomness in parameter selection. A tunnel is analyzed using FLAC3D and the inversion of the elastic-plastic displacements is conducted based on the calculated displacements of measured points. The results show that the convergence rate and inversion precision of this method are better than that of the BP neural network regarding small samples.
KeywordsMechanical parameters of rock mass,   Artificial fish swarm algorithm,   Support vector machine (SVM),   BP neural network,   Back analysis of displacement     
基金资助:

基金项目:国家自然科学基金项目(51274053)

作者简介: 作者简介:胡 军(1977-),男,教授,博士,主要从事智能算法在边坡和隧道围岩等岩土工程安全评价应用等方面的科研工作,E-mail:kdhj1977@126.com.
引用本文:   
.基于 IAF-SVM的隧道位移反分析研究[J]  现代隧道技术, 2017,V54(5): 54-60
.Back Analysis of Tunnel Displacements Based on the IAF-SVM Algorithm[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(5): 54-60
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2017/V54/I5/54
 
没有本文参考文献
[1] 李瑞俊1 宋宗莹2 李 琛1 王文斌2 任育珍3,4 蔡建华3,4 张家旭3,4.重载铁路梁家山隧道病害多源融合诊断与处置对策[J]. 现代隧道技术, 2025,62(4): 301-308
[2] 张小龙.桩基荷载作用下地铁盾构隧道结构力学响应分析[J]. 现代隧道技术, 2025,62(4): 82-89
[3] 李克玺1,2 党建东3 张 见3 叶光祥4 王晓军1,2 陈青林1,2 曹世荣2 张 河1,2.基于声发射特征参数的不同类型砂岩破裂特征研究[J]. 现代隧道技术, 2025,62(4): 26-36
[4] 周彩荣1 易黎明1 马山青2 周 蠡3 于金弘4,5.三点加载下高性能纤维混凝土顶管承载特性及配筋方案研究[J]. 现代隧道技术, 2025,62(4): 50-60
[5] 郭永军1 李 超2 郑建国3 于永堂4 朱才辉5.地面堆载对西安黄土地层中既有盾构管片影响研究[J]. 现代隧道技术, 2025,62(4): 61-72
[6] 王永刚1 崔翌堃1 吴九七2,3 黄 俊4 沈 翔2,3 杨 奎4 苏 栋2,3.考虑不同磨损形式下的滚刀受力与磨损对比分析[J]. 现代隧道技术, 2025,62(4): 73-81
[7] 冯冀蒙1,2 宋佳黛1,2 王圣涛3 李艺飞1,2 张俊儒1,2 王好明4 汪 波1,2.填海地层特大断面隧道超长管棚变形控制 效能研究[J]. 现代隧道技术, 2025,62(4): 155-162
[8] 徐才坚1 陈星宇1 雷明林1 张兴龙2 孙怀远2 李晓军2.隧道施工掌子面前方围岩富水性数字孪生与风险决策[J]. 现代隧道技术, 2025,62(4): 90-99
[9] 杨 颖1 倪 凯1 葛 林2 张明飞3 王晓睿4.弱光条件下基于改进Unet模型的隧道渗水病害图像分割[J]. 现代隧道技术, 2025,62(4): 100-110
[10] 苏开春1 付 锐2,3 曾弘锐2,3 冷希乔4 郭 春2,3.基于DBO-A-LSTM的公路隧道短时多步交通量预测[J]. 现代隧道技术, 2025,62(4): 111-121
[11] 熊 颖1,2 张俊儒1,2 范子焱1,2 陈佳豪1,2 马荐驰1,2 陈鹏涛1,2 谭瑞锋3,4.层状软岩中爆破应力波传播与振动衰减特性研究[J]. 现代隧道技术, 2025,62(4): 122-131
[12] 刘 杨1 邵泽楷2 田浩帆2 张汝溪1 郑 波3 王峥峥2.高速公路隧道下穿房柱式煤矿采空区爆破施工煤柱 损伤规律研究[J]. 现代隧道技术, 2025,62(4): 132-144
[13] 罗志洋1 张春瑜2,3 王立川1,2,4,5 徐 烁1 李利平4 王倩倩5 刘志强6.TBM裂隙岩体隧洞涌水机制及注浆堵水研究[J]. 现代隧道技术, 2025,62(4): 145-154
[14] 周弋力1 封 坤1 郭文琦1 张亮亮2 李春林3.超大直径盾构隧道管片纵缝抗弯力学行为与损伤过程研究[J]. 现代隧道技术, 2025,62(4): 163-173
[15] 易 丹1 薛皓匀2 杨绍毅2 喻 波1 封 坤2 林 刚1.盾构隧道管片结构螺栓失效对横向地震响应的影响分析[J]. 现代隧道技术, 2025,62(4): 174-181
Copyright 2010 by 现代隧道技术