[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2019, Vol. 56 Issue (2) :134-    DOI:
试验与研究 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
黄土连拱隧道中墙力学特征现场测试与分析
(1 长安大学陕西省公路桥梁与隧道重点实验室,西安 710064;2 西安建筑科技大学理学院,西安 710055)
In-situ Test and Analysis of Mechanical Behaviors of the Mid-wall of Multi-arch Loess Tunnels
(1 Shaanxi Provincial Major Laboratory for Highway Bridge & Tunnel, Chang’an University, Xi′an 710064; 2 School of Science, Xi′an University of Architecture and Technology, Xi′an 710055)
Download: PDF (4773KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要  连拱隧道中墙是受力复杂部位和重要承载构件,直接影响到隧道的安全性与经济性。为研究黄土连拱隧道中墙受力规律,文章以陕北某黄土连拱隧道为依托,采用钢弦式传感器对隧道中墙顶部和底部接触压力、中导洞锚杆轴力、中墙钢筋计轴力及中墙内力进行了系统测试与分析。结果表明:中墙基底压力两边大中间小,呈“马鞍形”分布,基底压力比中导洞顶部接触压力大;锚杆轴力较小,峰值在围岩浅部,深部轴力约为峰值的 10%,中导洞锚杆支护作用不明显,可以取消;中墙钢筋计轴力向底部增大,中墙受力上部较下部敏感;中墙受力最大位置在中部偏左下侧,左右线应力先后释放对中墙受力有一定的“纠偏”作用,但中墙始终受到偏压作用;按组合变形构件推算的中墙最大轴力值约为 583 kN,最大弯矩值约为 45 kN·m,中墙处于稳定状态,其纵向承受扭矩作用、最大值约为79 kN·m,内力十分复杂。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
邱军领 1 赖金星 1
2 郭春霞 2 樊浩博 1 谢永利 1
关键词:   
Abstract: The mid-wall of a multi-arch tunnel is an important loading component and has direct impact on tunnel safety and economy. In order to understand the mechanical behaviors of the mid-wall of a multi-arch loess tunnel,systematic test and analysis were conducted based on a multi-arch loess tunnel in northern Shaanxi province regarding contacting pressure on top and bottom of the middle-wall, axial force of anchor bolt in middle pilot heading and axial force of rebar meter at the middle-wall as well as internal force of the mid-wall using the steel wire transducer.The test results indicate that the pressure at the bottom of mid-wall approximately take a saddle shape, which is large on both sides and small in the middle and the pressure at the base is larger than the contacting pressure at the top of middle pilot heading; axial force of anchor bolt is small, peak axial force occurs at shallow-buried part of rock mass and axial force at the deep-buried part is about 10% of that in shallow-buried section, the support effect of anchor bolt at middle pilot heading is not obvious and anchor bolt can be canceled at this place; the axial force of rebar meter at middle-wall is increasing towards the bottom and it’s more sensitive to the force on the upper part of midwall compared with that on the lower part; the max. force of mid-wall occurs at the left lower side of mid-wall, and stress release of the right and left tubes has certain "rectification" effect on force of mid-wall but the mid-wall has always been affected by asymmetric pressure; the calculated max. axial force of mid-wall is about 583 kN, the max.bending moment is about 45 kN·m, the mid-wall is stable, the max. longitudinal torque is around 79 kN·m and the internal force is very complex.
KeywordsLoess tunnel,   Multi-arch tunnel,   Mid-wall,   In-situ test,   Mechanical behavior     
基金资助:基金项目:国家重点研发计划(2018YFC0808706);陕西省工业科技攻关项目(No. 2015GY185);交通运输部西部交通建设科技项目 (No.200731800018).
作者简介: 作者简介:邱军领(1989-),男,工学博士,讲师,主要从事隧道工程方面的教学与科研工作,E-mail:870133597@qq.com. 通讯作者:赖金星(1973-),男,工学博士,副教授,硕士生导师,主要从事隧道工程方面的教学与科研工作,E-mail: laijinxing@chd.edu.cn.
引用本文:   
邱军领 1 赖金星 1, 2 郭春霞 2 樊浩博 1 谢永利 1 .黄土连拱隧道中墙力学特征现场测试与分析[J]  现代隧道技术, 2019,V56(2): 134-
QIU Junling1 LAI Jinxing1, 2 GUO Chunxia2 FAN Haobo1 XIE Yongli1 .In-situ Test and Analysis of Mechanical Behaviors of the Mid-wall of Multi-arch Loess Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2019,V56(2): 134-
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2019/V56/I2/134
 
没有本文参考文献
[1] 刘飞香 1,2.SCDZ133智能型隧道多功能作业台车及其施工技术[J]. 现代隧道技术, 2019,56(4): 1-7
[2] 周文波 吴惠明 赵 峻.泥岩地层常压刀盘盾构的掘进策略与分析[J]. 现代隧道技术, 2019,56(4): 8-15
[3] 陈卓立 1,2 朱训国 1,2 赵德深 1,2 王云平 1,2.深埋隧洞让压支护结构的锚固机理探究[J]. 现代隧道技术, 2019,56(4): 16-22
[4] 王全胜.矩形盾构法隧道管片分块案例分析及分块原则[J]. 现代隧道技术, 2019,56(4): 23-29
[5] 张 恒 1 朱亦墨 1 林 放 1 陈寿根 1 杨家松 2.基于Q系统的地下洞库中台阶最佳开挖高度研究[J]. 现代隧道技术, 2019,56(4): 30-37
[6] 李 好.大断面岩溶隧道贯通段地质情况的无线电波透视试验探测[J]. 现代隧道技术, 2019,56(4): 38-42
[7] 岑培山 1 田坤云 2 王喜民 3.蒙华铁路阳山隧道瓦斯危害性评估研究[J]. 现代隧道技术, 2019,56(4): 43-49
[8] 朱建峰 1 宫全美 2.软土地层盾构隧道长期沉降离心试验研究[J]. 现代隧道技术, 2019,56(4): 49-55
[9] 陈柚州 1 任 涛 2 邓 朋 2 王 斌 3.基于人工蜂群优化小波神经网络的隧道沉降预测[J]. 现代隧道技术, 2019,56(4): 56-61
[10] 王登茂 滕振楠 田志宇 陈志学.桃园至巴中高速公路八庙隧道非常规岩爆段病害处治与设计反思[J]. 现代隧道技术, 2019,56(4): 62-68
[11] 吴树元 1 程 勇 1 谢全敏 2 刘继国 1 陈必光 1.西藏米拉山隧道围岩大变形成因分析[J]. 现代隧道技术, 2019,56(4): 69-73
[12] 王 睢 1,2,3 钟祖良 3 刘新荣 3 吴 波 1,2,4 赵勇博 1,2 李占涛 1,2.基于D-P准则有压圆形衬砌隧洞弹塑性解[J]. 现代隧道技术, 2019,56(4): 74-80
[13] 李 明 严松宏 潘春阳 张旭斌.富水大断面黄土隧道开挖流固耦合效应分析[J]. 现代隧道技术, 2019,56(4): 81-88
[14] 张 凯 1 陈寿根 2 霍晓龙 3 谭信荣 4.岩溶地区隧道涌水风险的可拓评价模型及应用[J]. 现代隧道技术, 2019,56(4): 89-96
[15] 李 杰 1 张 斌 1 付 柯 1 马 超 1 郭京波 1 牛得草 2.基于现场掘进数据的复合地层盾构掘进性能预测方法研究[J]. 现代隧道技术, 2019,56(4): 97-104
Copyright 2010 by 现代隧道技术