[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2017, Vol. 54 Issue (5) :70-77    DOI:
研究与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
大断面矩形顶管隧道开挖面土体稳定性研究
(1 内蒙古科技大学土木工程学院,包头 014010;2 内蒙古科技大学数理与生物工程学院,包头014010;3 包头城建集团股份有限公司,包头 014010)
Soil Mass Stability at the Working Face of a Rectangular Pipe-Jacking Tunnel with a Large Section
(1 College of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014000;2 College of Mathematical and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou 014000;3 Baotou Urban Construction Group Ltd.,Co., Baotou 014000)
Download: PDF (3308KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 文章以采用土压平衡矩形顶管法施工的内蒙古科技大学地下通道为背景,采用理论分析、数值模拟、现场监控量测等手段,对砂砾石地层条件下矩形顶管开挖面的主动和被动破坏规律进行了研究,主要得到了以下结论:(1)考虑顶管隧道开挖面为矩形断面的特点,建立梯形楔体计算模型,推导出开挖面主动破坏时的极限支护应力计算公式并应用于实际工程,采用该公式计算得到的极限支护压力与数值模拟计算结果相差较小,两种研究方法得到了相互验证;(2)采用 FLAC3D数值模拟得到的地表沉降槽与实测地表沉降槽形态基本相似,近似服从正态分布,且地表沉降值基本接近;(3)随着支护应力比的减小,开挖面塑性区逐渐由开挖面前方向斜上方发展,当支护应力比为 0.165时,开挖面前方土体水平位移骤然增加,开挖面塑性区延伸至地表,土体丧失整体稳定性,发生主动破坏,且从开挖面失稳后地表塑性区扩展形态来看,基本接近梯形楔形体形状,从而验证了解析公式计算模型的合理性;(4)随着支护应力比的增大,开挖面前方土体塑性区自开挖面顶部向地表斜上方延伸,当支护应力比为 3.0时,塑性区发展至地面,此时土体失稳,发生被动破坏,其塑性区范围远小于主动破坏时的塑性区。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词:   
Abstract: Based on an underpass project at the Inner Mongolia University of Science and Technology, which was constructed with an earth pressure balance rectangular pipe-jacking machine, the active and passive failure laws of the excavation face of the rectangular jacking pipe in sand and gravel are studied using theoretical analysis, numerical simulations, and site monitoring. The following conclusions are determined: 1) in light of the characteristics of rectangular sections, a trapezoidal wedge calculation model is set up, a calculation formula for extreme support stress during active failure of the tunnel face is derived and applied in a practical project, and the limited support pressure calculated by the above formula is determined to be very close to that of the numerical simulation, so the two methods are verified; 2) the form of the ground surface settlement trough simulated by FLAC3D is similar to the measured ground settlement trough, which approximately complies with a normal distribution and is very close to the ground settlement value; 3) with a decrease of the support stress ratio, the plastic zone of the excavation face develops from the front of the face to the inclined top. When support stress ratio is 0.165, the soil horizontal displacement in front of the excavation face suddenly increases, the plastic zone extends to the ground surface and active failure occurs with a loss of overall stability. The development pattern of the plastic zone at the surface after excavation face failure resembles a trapezoidal wedge shape, so the rationality of the calculation model is verified; and 4) with an increase of the support stress ratio, the plastic zone in front of the excavation face develops from the face top to the inclined top and reaches the ground surface, resulting in instability of the soil mass with passive failure occur? ring when the support stress ratio is 3.0, and the plastic zone is much smaller than that of active failure.
KeywordsRectangular pipe-jacking,   Sand and gravel stratum,   Stability of excavation face,   Numerical simulation,   Support force     
基金资助:

基金项目:内蒙古科自然科学基金项目(2017MS(LH)0523);内蒙古自治区高等学校科学技术研究项目(NJZY14167).

作者简介: 作者简介:许有俊(1979-),男,教授,博士,主要从事隧道、地下工程等方面的理论与技术研究工作,E-mail:xyoujun@163.com.
引用本文:   
.大断面矩形顶管隧道开挖面土体稳定性研究[J]  现代隧道技术, 2017,V54(5): 70-77
.Soil Mass Stability at the Working Face of a Rectangular Pipe-Jacking Tunnel with a Large Section[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(5): 70-77
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2017/V54/I5/70
 
没有本文参考文献
[1] 刘飞香 1,2.SCDZ133智能型隧道多功能作业台车及其施工技术[J]. 现代隧道技术, 2019,56(4): 1-7
[2] 周文波 吴惠明 赵 峻.泥岩地层常压刀盘盾构的掘进策略与分析[J]. 现代隧道技术, 2019,56(4): 8-15
[3] 陈卓立 1,2 朱训国 1,2 赵德深 1,2 王云平 1,2.深埋隧洞让压支护结构的锚固机理探究[J]. 现代隧道技术, 2019,56(4): 16-22
[4] 王全胜.矩形盾构法隧道管片分块案例分析及分块原则[J]. 现代隧道技术, 2019,56(4): 23-29
[5] 张 恒 1 朱亦墨 1 林 放 1 陈寿根 1 杨家松 2.基于Q系统的地下洞库中台阶最佳开挖高度研究[J]. 现代隧道技术, 2019,56(4): 30-37
[6] 李 好.大断面岩溶隧道贯通段地质情况的无线电波透视试验探测[J]. 现代隧道技术, 2019,56(4): 38-42
[7] 岑培山 1 田坤云 2 王喜民 3.蒙华铁路阳山隧道瓦斯危害性评估研究[J]. 现代隧道技术, 2019,56(4): 43-49
[8] 朱建峰 1 宫全美 2.软土地层盾构隧道长期沉降离心试验研究[J]. 现代隧道技术, 2019,56(4): 49-55
[9] 陈柚州 1 任 涛 2 邓 朋 2 王 斌 3.基于人工蜂群优化小波神经网络的隧道沉降预测[J]. 现代隧道技术, 2019,56(4): 56-61
[10] 王登茂 滕振楠 田志宇 陈志学.桃园至巴中高速公路八庙隧道非常规岩爆段病害处治与设计反思[J]. 现代隧道技术, 2019,56(4): 62-68
[11] 吴树元 1 程 勇 1 谢全敏 2 刘继国 1 陈必光 1.西藏米拉山隧道围岩大变形成因分析[J]. 现代隧道技术, 2019,56(4): 69-73
[12] 王 睢 1,2,3 钟祖良 3 刘新荣 3 吴 波 1,2,4 赵勇博 1,2 李占涛 1,2.基于D-P准则有压圆形衬砌隧洞弹塑性解[J]. 现代隧道技术, 2019,56(4): 74-80
[13] 李 明 严松宏 潘春阳 张旭斌.富水大断面黄土隧道开挖流固耦合效应分析[J]. 现代隧道技术, 2019,56(4): 81-88
[14] 张 凯 1 陈寿根 2 霍晓龙 3 谭信荣 4.岩溶地区隧道涌水风险的可拓评价模型及应用[J]. 现代隧道技术, 2019,56(4): 89-96
[15] 李 杰 1 张 斌 1 付 柯 1 马 超 1 郭京波 1 牛得草 2.基于现场掘进数据的复合地层盾构掘进性能预测方法研究[J]. 现代隧道技术, 2019,56(4): 97-104
Copyright 2010 by 现代隧道技术