[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2018, Vol. 55 Issue (6) :197-203    DOI:
施工技术 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
高压富水碎裂状岩层小半径曲线盾构隧道施工技术
(1 北京工业大学北京城市交通协同创新中心,北京 100124;2中铁十七局集团第六工程有限公司, 福州 350014 )
Construction Techniques for the Small-radius Curved Shield Tunnels in Water-rich Fractured Stratum with High Pressure
(1 Beijing Collaborative Innovation Center for Metropolitan Transportation, Beijing University of Technology, Beijing 100124; 2 The 6th Engineering Co., Ltd. of China Railway 17th Bureau Group Co., Ltd., Fuzhou 350014)
Download: PDF (2019KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 在不良岩土工程条件下,盾构施工将会遇到刀具切削效果差、掘进参数设置不合理以及喷涌等技术难题。文章针对福州地铁高压富水、碎裂状岩层和长距离小半径曲线等施工难点,通过对滚刀切削力的理论计算,分析了刀具的力学性能,提出了合理的刀具配置、掘进参数和刀具更换时机;通过实践探索,采用了螺旋输送机改造、出碴控制和地面降水相结合的防喷涌措施;通过数值模拟方法分析了小半径曲线段盾构掘进开挖面稳定情况,并总结出了长距离小半径曲线段盾构掘进以及姿态控制措施。结果表明:(1)盾构机在碎裂状岩层中掘进时,岩块对于刀具的侧向冲击力很大,需对滚刀采取加固措施;(2)在总推力上升4 000~7 000 kN、扭矩上升1 000~1 500 kN·m、掘进速度小于 10 mm/min时,应结合碴样情况,考虑在合适的时机进行换刀;(3)采用所研发的螺旋输送机防喷涌装置,结合地面降水和出碴控制措施,可有效减少喷涌的发生;(4)本工程盾构机在小半径曲线上长距离掘进过程中,轴线最大偏移量、管片安装高程偏差均满足盾构施工规范要求。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词:   
Abstract: A variety of construction problems, such as bad cutting effects of cutters, unreasonable boring parame? ters and blowout, are often encountered during shield tunnelling under unfavorable geological conditions. Aimed at these construction difficulties of high pressure, abundant underground water, fractured rock stratum, long distance and small-radius curves of Fuzhou metro, the mechanical behaviors of cutting tools were analyzed through theoretical calculations of cutter cutting force, then the reasonable cutter configuration, tunneling parameters and the proper time for cutter replacement were presented. Some measures, such as screw conveyor renovation, mucking control and lowering of groundwater, were adopted for controlling blowout based on practice. The stability of excavation face was analyzed by numerical simulation, and the measures for shield boring and posture control in the long distance and small radius curved tunnels were summarized. The conclusions are as follows: 1) when shield machine is driven in fractured stratum, the effect of lateral impact force produced by spalling rock on cutter will be very large and reinforcement is needed for cutter; 2) cutter replacement should be taken at proper time based on muck samples in conditions of increasing of total shield thrust by 4 000-7 000 kN, cutter torque by 1 000-1 500 kN·m and driving speed smaller than 10 mm/min; 3) adopting screw conveyor device with innovative anti-blowout devices and control measures for ground precipitation and mucking, it controls blowout effectively; 4) the maximum axis offset and the height offset of segment meet the requirements of shield construction specifications during shield construction of long distance small-radius curved tunnel.
KeywordsShield machine;Fractured stratum,   High-pressure and abundant underground water;Small-radius curved tunnel;Configuration of cutting tools,   Replacement of cutting tools,   Driving parameters,   Innovation of screw conveyor,   Blowout     
基金资助:

基金项目:国家科技支撑计划子课题(2013BAB10B01-05);国家自然科学基金资助项目(51738010)

作者简介: 作者简介:张明聚(1962-),男,博士,教授,主要从事城市地下工程科研工作,E-mail:Zhangmj@bjut.edu.cn. 通讯作者:张振波(1990-),男,博士研究生,主要从事地下结构及岩土工程科研工作,E-mail:zzb759619047@126.com.
引用本文:   
.高压富水碎裂状岩层小半径曲线盾构隧道施工技术[J]  现代隧道技术, 2018,V55(6): 197-203
.Construction Techniques for the Small-radius Curved Shield Tunnels in Water-rich Fractured Stratum with High Pressure[J]  MODERN TUNNELLING TECHNOLOGY, 2018,V55(6): 197-203
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2018/V55/I6/197
 
没有本文参考文献
[1] 刘飞香 1,2.SCDZ133智能型隧道多功能作业台车及其施工技术[J]. 现代隧道技术, 2019,56(4): 1-7
[2] 周文波 吴惠明 赵 峻.泥岩地层常压刀盘盾构的掘进策略与分析[J]. 现代隧道技术, 2019,56(4): 8-15
[3] 陈卓立 1,2 朱训国 1,2 赵德深 1,2 王云平 1,2.深埋隧洞让压支护结构的锚固机理探究[J]. 现代隧道技术, 2019,56(4): 16-22
[4] 王全胜.矩形盾构法隧道管片分块案例分析及分块原则[J]. 现代隧道技术, 2019,56(4): 23-29
[5] 张 恒 1 朱亦墨 1 林 放 1 陈寿根 1 杨家松 2.基于Q系统的地下洞库中台阶最佳开挖高度研究[J]. 现代隧道技术, 2019,56(4): 30-37
[6] 李 好.大断面岩溶隧道贯通段地质情况的无线电波透视试验探测[J]. 现代隧道技术, 2019,56(4): 38-42
[7] 岑培山 1 田坤云 2 王喜民 3.蒙华铁路阳山隧道瓦斯危害性评估研究[J]. 现代隧道技术, 2019,56(4): 43-49
[8] 朱建峰 1 宫全美 2.软土地层盾构隧道长期沉降离心试验研究[J]. 现代隧道技术, 2019,56(4): 49-55
[9] 陈柚州 1 任 涛 2 邓 朋 2 王 斌 3.基于人工蜂群优化小波神经网络的隧道沉降预测[J]. 现代隧道技术, 2019,56(4): 56-61
[10] 王登茂 滕振楠 田志宇 陈志学.桃园至巴中高速公路八庙隧道非常规岩爆段病害处治与设计反思[J]. 现代隧道技术, 2019,56(4): 62-68
[11] 吴树元 1 程 勇 1 谢全敏 2 刘继国 1 陈必光 1.西藏米拉山隧道围岩大变形成因分析[J]. 现代隧道技术, 2019,56(4): 69-73
[12] 王 睢 1,2,3 钟祖良 3 刘新荣 3 吴 波 1,2,4 赵勇博 1,2 李占涛 1,2.基于D-P准则有压圆形衬砌隧洞弹塑性解[J]. 现代隧道技术, 2019,56(4): 74-80
[13] 李 明 严松宏 潘春阳 张旭斌.富水大断面黄土隧道开挖流固耦合效应分析[J]. 现代隧道技术, 2019,56(4): 81-88
[14] 张 凯 1 陈寿根 2 霍晓龙 3 谭信荣 4.岩溶地区隧道涌水风险的可拓评价模型及应用[J]. 现代隧道技术, 2019,56(4): 89-96
[15] 李 杰 1 张 斌 1 付 柯 1 马 超 1 郭京波 1 牛得草 2.基于现场掘进数据的复合地层盾构掘进性能预测方法研究[J]. 现代隧道技术, 2019,56(4): 97-104
Copyright 2010 by 现代隧道技术